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Abstract 
Micronutrient deficiencies are a pervasive yet often unrecognized global health issue, 

affecting an estimated one-third of the world’s population without obvious clinical symptoms. 

Conventional dietary assessment methods, such as manual food logging or sensor‑dependent 

imaging, both impose a substantial user burden or require specialized hardware, limiting 

widespread adoption. This report describes the design, implementation, and evaluation of a 

mobile platform that integrates lightweight computer vision preprocessing with large 

language model services to deliver real‑time, personalized nutrient feedback from standard 

smartphone images. We employ YOLOv11 for preliminary food‑group classification to 

minimize token usage in GPT‑4o API calls, coupled with native iOS (Swift) and Android 

(Kotlin) frontends, a Python‑based Docker‑containerized backend, local persistence via Swift 

Data and Room, and Firebase Authentication for secure user management. User interfaces 

including diary, report, and conversational chatbot pages, provide intuitive workflows for 

capturing meal data, visualizing intake against individualized targets, and receiving tailored 

dietary insights. Preliminary system deployment demonstrates the feasibility of a 

cost‑effective, hardware‑agnostic approach, although the current classification model’s 

limited taxonomy constrains content coverage. Future enhancements will target 

comprehensive food recognition, depth‑based portion estimation, and integration with 

external health data sources. 
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1. Introduction 

1.1. Background 

More than half of the world’s population consumes inadequate levels of critical 

micronutrients, such as calcium, iron, and vitamins C and E, yet most are unaware of these 

deficiencies until significant health issues emerge [1]. Globally, one in three people suffers 

from at least one micronutrient deficiency, often without obvious symptoms in early stages 

[2]. In the United States, deficiency rates can reach up to 10% for vitamin B6, vitamin D, and 

iron among certain demographic groups, highlighting gaps in public awareness and routine 

screening [3]. Despite this prevalence, traditional nutrient monitoring relies on periodic blood 

tests and self‑report surveys, which many individuals neglect due to cost, access barriers, or 

low perceived risk [4]. 

1.2. Existing Approach 

Most nutrition tracking apps require manual food logging, where users search for 

items, estimate portion sizes, and enter details, an error‑prone process that can underreport 

calories by up to 20% and overlook micronutrient intake complexity [5], [6]. Image‑based 

solutions like SnapCalorie use LiDAR depth sensors (available only on select devices) and 

human reviewers to estimate portions and verify AI outputs, introducing latency, cost, and 

device dependence [7], [8]. Using SnapCalorie as an example, SnapCalorie’s target audiences 

are mainly health-conscious people focusing on macronutrients (Figure 1). While early trials 

of AI‑powered food recognition demonstrate promising accuracy for macros, few consumer 

apps deliver real‑time, end‑to‑end analysis of vitamins and minerals without specialized 

hardware [9], [10]. 
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Figure 1. SnapCalorie application targeting health conscious people 

1.3 Motivation 

A significant portion of the population remains unaware of their dietary deficiencies 

until advanced stages, underscoring the need for continuous, low‑barrier nutrient monitoring 

[1], [4]. By providing instant AI‑driven feedback on both macro‑ and micronutrient intake 

from simple food photos, we can raise awareness and prompt corrective action sooner than 

traditional methods allow [9], [11]. Eliminating reliance on extra sensors or manual review 

reduces friction, encouraging sustained use and empowering users to recognize and address 

gaps in their diet before symptoms arise [12], [13]. 

1.4. Objectives 

The objective of this project is to create a mobile application with a unified, intuitive 

interface tailored for users unfamiliar with nutrient terminology. The application will 

integrate GPT‑4o to identify multiple foods per image, to analyze the user’s food intake, and 

to power a personalized chatbot. Consequently, the app will then produce daily and up to 

seven‑day summaries that flag any nutrient shortfalls, benchmark intake against 
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recommended ranges, and present alerts and explanations in straightforward, 

easy‑to‑understand formats. 

1.5. Outline of the report 

 The remainder of this document is organized into three main sections. Section 2 

details the methodology, outlining the development tools, the client–server architecture, 

frontend and backend implementations, local data persistence, and user authentication flows. 

Section 3 presents the project results, describing the design and functionality of each user 

interface page—Authorization, Welcome, Home/Diary, Report, Chat, Settings, and Dark 

Mode—followed by an examination of challenges encountered and the limitations of the 

current implementation. Finally, Section 4 offers a conclusion that summarizes the system’s 

achievements and feasibility, and proposes future work to enhance classification accuracy, 

portion estimation, user experience, and integration with external health data sources. 
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2. Methodology 
In this section, we will explain the development environment, collaboration tools, and 

the architectural design of the mobile nutrition platform. We first discuss the selection and 

purpose of each development tool used. Next, we present an overview of the end-to-end 

system architecture, followed by focused descriptions of the frontend, backend, database, and 

authorization subsystems. 

2.1. Development Tools 

The project leveraged four primary development tools to facilitate coding, debugging, version 

control, and deployment. 

XCode 

Xcode served as the integrated development environment (IDE) for the iOS client, offering a 

suite of editors and simulators that streamline Swift code writing, interface design, and 

performance profiling.  

Android Studio 

For the Android client, Android Studio was the IDE of choice, providing advanced Kotlin 

support, real-time layout previews, and built‑in tools for code linting and APK packaging. 

Git 

To manage source code, coordinate team contributions, and maintain a clear history of 

changes, we used Git in conjunction with a remote hosting service. Git enabled distributed 

version control, branch management, and pull‑request workflows, ensuring reproducible 

builds and simplified integration. 

Docker 

Docker was utilised to containerise the backend services, encapsulating runtime dependencies 

and configurations into portable images that could be consistently deployed on development 

machines and the VPS server without environmental discrepancies. 
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2.2. Project Architecture 

The system follows a client–server model in which the mobile applications act as thin clients, 

forwarding user requests to a centralized backend. The backend processes incoming requests 

by interacting with the ChatGPT API, then returns structured responses that the clients render 

in their native interfaces. This separation of concerns promotes modularity, facilitates 

independent scaling, and simplifies maintenance. 

2.2.1. Frontend 

The frontend comprises two native mobile applications: an iOS client written in Swift and an 

Android client written in Kotlin. On iOS, we used SwiftUI for declarative UI layouts, 

URLSession for asynchronous network calls, and SwiftImage for initial image handling and 

preprocessing. On Android, the app leverages declarative XML files for seamless UI 

composition, Retrofit for HTTP communication, and Coil for image loading and caching. 

Both codebases implement a repository pattern to abstract data sources, enabling consistent 

request formatting, response parsing, and local caching of recent analysis results. 

2.2.2. Backend 

The backend is implemented in Python, using a lightweight web framework to define 

RESTful endpoints that correspond to app actions (e.g., scan food, fetch report, chat). Each 

endpoint validates incoming JSON payloads, forwards the relevant data to the GPT API, and 

applies minimal business logic before returning the API’s response. To ensure environmental 

consistency and simplify deployment, the backend code and its dependencies are packaged 

into a Docker container, which is then deployed to a Virtual Private Server (VPS). This 

containerized approach eliminates configuration drift between local development and 

production environments. 
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2.2.3. Database 

For offline support and to minimize network calls, the application uses each platform’s native 

local persistence layer. On iOS, Swift Data provides an object graph and persistence 

framework that stores user profiles, meal logs, and cached nutrient analyses in a SQLite store 

under the hood. On Android, we employ Room, which offers a type-safe abstraction over 

SQLite, enabling compile-time verification of SQL queries and seamless mapping between 

entities and database tables. Both solutions support migrations and encrypted storage to 

protect sensitive user data. 

2.2.4. Authorization 

User identity and access control are handled via Firebase Authentication, which offers secure, 

managed sign-up and sign-in flows. We configured Firebase to support Google Sign-In, 

which enabled users to authenticate using their existing Google accounts. Firebase handles 

token issuance, refresh, and revocation, and the mobile clients attach the issued ID tokens to 

each backend request, ensuring that only authenticated sessions can access user-specific 

endpoints.  
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2.3. Timetable 

Date Milestones Status 

September 2024 Detailed Project Plan Completed 

October 2024 UI/UX Design 

Basic Prototype 

Completed 

November 2024 Frontend Development, 

API Setup 

Completed 

December 2024 Frontend Development, 

Backend Development 

Completed 

January 2025 Frontend Development, 

Backend Development, 

First Presentation, 

Interim report 

Completed 

February 2025 Frontend Development, 

Backend Development 

Completed 

March 2025 Overall System Testing Completed 

April 2025 Final Report Completed 

Table 1. Project Schedule  
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3. Project Results 
Following the methodology discussed in section 2, this section showcases the results that 

have been produced, with challenges faced and limitations of the project. 

3.1 Platform Design 

3.1.1 Authorization 

The Authorization page appears upon first launch or after a user logs out. It offers options to 

sign in or register using Firebase Authentication, with a Google Sign‑In button for 

streamlined access. Users can log in through their Google email account, and successful 

authentication transitions users to the Welcome page. All authentication tokens are securely 

stored in the client’s key chain (iOS) or encrypted shared preferences (Android) to maintain 

session state across app restarts. 

 

Figure 2. Authorization Page 
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3.1.2 Welcome Page 

The Welcome page serves as the app’s landing screen for authenticated users who sign into 

the app for the first time. It features a brief scanning workflow that takes the user’s basic data 

and stores it in the database. A central “Continue” button guides users to the Home page. The 

design employs a clean layout with illustrative pictures and concise text. 

 

Figure 3. Welcome Page  
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3.1.3 Home Page 

Also referred to as the Diary page, the Home page allows users to capture and review food 

entries. Daily nutrition details are summed up and are displayed at the top below the date of 

the page. Below this, three scrollable lists display the meals logged, with each section having 

its own “add” button. The add button opens up the camera and gives access to the gallery. 

Users are also able to swipe to delete the meals logged under each category of breakfast, 

lunch, and dinner.  

 

Figure 4. Home Page 
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3.1.4 Report Page 

The report page lets users choose up to seven consecutive days to generate a report for. Users 

are then able to visualize AI’s analysis of their daily intake of nutrients based on their 

personal information. An overall score would be given to the user, along with a comment 

from AI on their diet. All thirty nutrients are displayed in the report; deficiencies below 80% 

and over 120% are highlighted in red, while those within the range are highlighted in green. 

The report will be available to be download as an image to the user’s phone. 

 

Figure 5. Report Page 
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3.1.5 Chat Page 

The Chat page hosts the GPT‑4o‑powered chatbot, presented as a conversational interface. 

Previous messages appear in a vertically scrollable view, with user queries and bot responses 

to be viewed by their profile picture. The input field at the bottom supports text entry. The 

assistant takes information for the past week of the user’s logs and the user’s personal 

information. 

 

 Figure 6. Chat Page 
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3.1.6 Settings Page 

The Settings page allows users to manage their personal health data and account settings. At 

the top, the user’s profile picture and display name, retrieved from their Google account via 

Firebase Authentication, are prominently displayed, offering a sense of personalization. 

Below this, editable fields allow users to input or update their current weight, goal weight, 

height, and birthdate. These metrics are used by the app to tailor nutrient targets, report and 

chatbot feedback. The logout function is located at the bottom of the page, accompanied by 

the user’s authenticated email address for clarity. When selected, it signs the user out securely 

and clears session tokens from the device. 

 Figure 7. Settings Page 
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3.1.7 Dark Mode 

To accommodate user preferences and reduce eye strain, the app detects system‑level colour 

scheme settings and automatically switches between light and dark themes. All UI 

components, including backgrounds, text, icons, and charts, adjust their colour palettes to 

maintain contrast and readability. 

 

 Figure 8. App in Dark mode 
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3.2 Challenges 

One of the primary challenges encountered during development involved the handling of 

food images for nutritional analysis using GPT-4o. Directly uploading user images to the 

GPT model was found to be highly inefficient, as it consumed a large number of tokens per 

request. This significantly impacted both performance and cost. To avoid this issue, we 

introduced a preprocessing step using the YOLOv11 (You Only Look Once version 11) 

object detection model. This model is employed to classify the image into general food 

groups before passing the classified result to GPT-4o for further nutritional analysis. This 

approach substantially reduced the number of tokens required, thereby optimizing both 

latency and budget constraints. Additionally, ensuring visual and functional consistency 

between the iOS and Android applications presented difficulties due to native UI conventions 

and component differences, necessitating extra design iterations and conditional styling to 

maintain a uniform look and feel. 

3.3 Limitations 

While the YOLOv11-based classification step proved to be an effective solution, it 

introduced its own limitations. Specifically, the model is only trained to recognize a limited 

set of food groups, which restricts the range and accuracy of the nutritional analysis for 

diverse and complex meals. A more comprehensive classification model would ideally be 

used; however, implementing such a model requires a high-performance backend 

infrastructure equipped with GPU acceleration. Given the project’s constrained budget and 

timeline, it was not feasible to either acquire the necessary hardware or allocate time for 

training a more advanced model capable of recognizing a broader spectrum of foods. As a 

result, the application currently provides an informative but not exhaustive analysis of dietary 

intake.  
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4. Conclusion and Future Works 

4.1. Conclusion 

The development and deployment of this mobile nutrition platform demonstrate the 

feasibility and value of leveraging modern AI techniques to bridge the awareness gap in 

dietary intake. By integrating GPT-4o for natural language understanding and employing 

YOLOv11 for initial image classification, the application is able to provide users—many of 

whom previously lacked insight into their micronutrient status—with rapid, on-device 

feedback after photographing their meals. The native Swift and Kotlin frontends deliver a 

responsive, intuitive user experience, while the Python-based, containerized backend ensures 

consistent, secure communication with the OpenAI API. Local persistence via Core Data and 

Room underpins offline support and efficient caching, and Firebase Authentication facilitates 

streamlined, secure user onboarding. User interface components—from the Diary page to the 

AI chatbot—work in concert to present nutrient summaries, identify deficiencies, and offer 

personalized insights in straightforward language. Although constrained by budget and token 

consumption challenges, the project successfully illustrates a cost-effective, end-to-end 

solution for dietary monitoring that requires no specialized hardware beyond a standard 

smartphone camera. Overall, the platform validates the potential of combining lightweight 

computer vision with large-language-model services to enhance public understanding of 

nutrition and to encourage healthier eating behaviors among a population segment that may 

be unaware of their own dietary shortfalls. 
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4.2. Future Works 

Looking ahead, several avenues exist to expand the platform’s capabilities and accuracy. 

First, migrating classification to a more comprehensive food-recognition model—trained on 

an extensive, diverse dataset—would broaden the range of detectable foods beyond the 

limited categories currently supported by YOLOv11. Achieving this will likely require 

GPU-accelerated infrastructure or partnerships that can underwrite the associated 

computational costs. Second, integrating real-time portion-size estimation using monocular 

depth estimation techniques could replace heuristic volume approximations and further 

reduce dependency on coarse group classifications. Third, incorporating longitudinal user 

studies and A/B testing will provide empirical data on engagement patterns, usability, and 

behavior change efficacy, informing iterative improvements to both UI design and chatbot 

dialogue strategies. Additionally, expanding the nutrient database to include specialized 

dietary regimes (e.g., ketogenic, vegan, low-FODMAP) and localizing content for different 

cultural cuisines will increase relevance for a broader user base. Finally, enabling 

interoperability with wearable health devices and third-party fitness platforms could enrich 

the context for nutrient recommendations and support a more holistic view of user health 

metrics. Collectively, these enhancements will advance the platform toward a robust, scalable 

solution for personalized nutrition monitoring and guidance.  
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