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Abstract 

Emotion recognition is a critical part of human-computer interaction, with applications across 

various fields such as marketing, security, and mental healthcare. However, existing ER models 

often require high computational resources due to their complex structures and large parameter 

sets, limiting their practicality for real-time applications on smart devices. To address these 

issues, this project develops a lightweight, multi-modal model for efficient real-time emotion 

recognition. The model utilizes data inputs including whole images, cropped facial images, and 

audio data. End-to-end training is conducted using shallow Convolutional Neural Networks and 

Long Short-Term Memory networks for spatial and temporal feature extraction, with the simple 

concatenation-based fusion approach further reducing complexity. The model is trained 

end-to-end and evaluated on the MELD dataset, with data augmentation techniques applied to 

improve robustness. Preliminary results show promising performance, particularly for dominant 

emotion classes. Future work will involve expanding to more diverse datasets and exploring 

advanced architectures for improved generalization and fine-grained emotion recognition. 
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1. INTRODUCTION 

As a crucial part of human-computer interaction, emotion recognition (ER) is drawing increasing 

attention because of its vital importance in several application fields, such as marketing, security, 

and mental healthcare [1]. Especially, in the development of interactive chatbots, the integration 

of human emotion status into AI models can help generate more natural and intuitive responses, 

thereby enhancing user experience and improving response efficiency. 

 

Although some models have shown promising accuracy in emotion recognition tasks, most of 

them feature complex structures and large parameter sets, which hinder their ability to produce 

results in real time. For example, the M2FNet (Multi-modal Fusion Network) model achieves 

high accuracy by employing a hierarchical framework that processes features at both the 

utterance and dialog levels. It first uses the RoBERTa-based text feature extractor and custom 

visual and audio feature extractors to obtain utterance-level information, then combines these 

features through a multi-head attention fusion mechanism [2]. All these feature extractors and the 

attention mechanism significantly contribute to the model's high parameter count, making it 

computationally intensive and challenging for daily usage. 

 

Significant demand exists for developing smaller models that can run effectively on smart 

devices (e.g., mobile phones or embedded systems) while maintaining a reasonable level of 

accuracy for emotion recognition. Adjusting the balance between model complexity and 

efficiency is essential for enabling real-time emotion detection across a wide range of smart 

devices. 

 

This paper makes two contributions. First, it designs a lightweight, multi-modal model capable 

of efficient automatic emotion recognition and easy integration into existing systems. The model 

will be trained and validated using up-to-date datasets to ensure robustness and accuracy. 

Second, this paper develops a web interface that provides real-time emotion recognition for 

demonstration purposes. The interface leverages audio and visual data collected from the smart 
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devices to generate emotion labels. A server will also be established to host this web page, 

ensuring efficient handling and processing of requests. 

 

The remainder of this paper proceeds as follows. Sections 2.1 to 2.3 outline the three main 

components of our emotion recognition model. Section 2.1 introduces the preprocessing 

procedures implemented. Section 2.2 discusses the feature extraction methods used to efficiently 

capture temporal and spatial information. Section 2.3 describes the feature fusion approach to 

fuse embeddings derived from different modalities. The front-end and server-side design of the 

website is shown in Section 2.4. Finally, Section 3 discusses the progress being made so far, and 

Section 4 presents the project schedules and milestones. 

 

 

Figure 1. Model Structure 

 

 

2. METHODOLOGY 

Multi-modal emotion recognition models, compared to uni-modal models, utilize multiple data 

sources rather than a single source to detect human emotions. They have been proven to 

outperform uni-modal classifiers in detection accuracy[3]. By utilizing complementary data from 

multiple sources, multi-modal systems offer higher accuracy and robustness, especially in 

complex, real-world scenarios where noise or ambiguity can degrade single-modality 
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performance.  Therefore, we will employ a multi-modal model for emotion recognition to 

leverage these advantages. 

 

As shown in Figure 1, the model structure can be divided into three main sections: data 

preprocessing, feature extraction, and feature fusion across modalities. The process is facilitated 

using the End2You toolkit, which supports the integration of these components efficiently. 

 

2.1 Data Preprocessing 

Three types of inputs are utilized: the original video frame, the cropped facial region, and the 

associated audio segment. Each utterance is first segmented into synchronized audio clips and 

image frames. A face detection module is then applied to extract facial regions from each frame, 

while the full-frame context is retained to preserve background and gesture information. This 

design is inspired by prior work [2][4], which suggests that combining facial expressions with 

contextual visual cues can improve emotion recognition accuracy. 

 

Given the variable-length nature of conversational data, we implemented a custom collate 

function to dynamically align temporal dimensions across samples within a batch. This avoids 

excessive zero-padding that may degrade model performance. 

 

Data augmentation strategies were applied during training to improve model robustness. For 

audio, pitch shifting and noise injection were used to increase variability. For visual data, a series 

of augmentations were applied, including random horizontal flipping, random rotation, and color 

jittering (adjusting brightness, contrast, saturation, and hue). During evaluation, only resizing and 

normalization were applied to ensure consistency of inputs. 

 

2.2 Feature Extraction 

Recent studies [5] have demonstrated that shallow CNN + RNN architectures are highly 

effective for end-to-end multimodal emotion recognition, often outperforming attention-based 

methods in low-resource settings while requiring fewer parameters. Based on these findings and 
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the goal of real-time performance, lightweight models were selected for both visual and audio 

modalities. 

For the visual stream, features were extracted using MobileFaceNet, applied to both the original 

video frames and the cropped facial regions. These spatial features were then passed through 

two-layer, unidirectional LSTM modules to model temporal dynamics across frames. 

In parallel, audio segments were converted into Mel-spectrograms, which were treated as 2D 

grayscale images. These were processed using a shallow convolutional neural network 

(AudioCNN) followed by LSTM layers, enabling the model to learn both spatial 

(time-frequency) and sequential patterns within speech signals. 

2.3 Feature Fusion 

To maintain a lightweight model architecture suitable for real-time applications, we avoided 

complex fusion techniques such as cross-modal attention [6]. Instead, we adopted a simple yet 

effective strategy: feature embeddings from the visual and audio modalities are concatenated at 

the feature level, and the combined vector is passed through a series of fully connected layers to 

produce the final emotion label. 

This straightforward fusion method ensures low latency and reduces computational overhead 

while still capturing complementary information across modalities. 

 

3. EXPERIMENTS AND RESULTS 

This section presents the experimental setup, design iterations, and evaluation results of our 

proposed multimodal emotion recognition model. We first describe the dataset and 

implementation details, followed by the architectural evolution informed by practical constraints 

and performance considerations. The final model is then evaluated on the MELD test set using a 

range of standard classification metrics. The results highlight both the strengths and limitations 

of the current approach, particularly its ability to handle class imbalance and represent subtle 

emotional expressions. 
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3.1 Dataset and Setup 

We evaluated our model on the Multimodal EmotionLines Dataset (MELD) [7], a benchmark 

dataset for multimodal emotion recognition in conversations. MELD contains over 13,000 

utterances annotated with seven emotion categories: neutral, joy, sadness, anger, surprise, fear, 

and disgust. Each utterance is accompanied by aligned audio and video, enabling synchronized 

multimodal analysis. 

In this work, we focused on audio and visual modalities, processing each utterance into a 

sequence of video frames (10 FPS) and a corresponding audio clip. Facial regions were extracted 

from each frame, and Mel-spectrograms were computed from the raw audio signals. 

The model was implemented using PyTorch and trained on NVIDIA RTX 3090 GPUs. To 

accelerate training and increase throughput, we adopted multi-GPU parallelism via 

nn.DataParallel. However, due to memory constraints arising from the use of both full-frame and 

cropped facial inputs, the effective batch size was reduced to 16 to ensure training stability and 

avoid out-of-memory (OOM) errors during multimodal processing. 

The core training configuration is summarized in Table 1. All hyperparameters and system 

settings are managed through a centralized configuration file (config.py) to facilitate modular 

design and easy experimentation. 

 

Parameter Value 

Batch size 16 

Image resolution 112 × 112 

Frame rate 10 FPS 

Audio sampling rate 16 kHz 

Optimizer Adam 

Initial learning rate 1e-4 
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Parameter Value 

Batch size 16 

Image resolution 112 × 112 

Frame rate 10 FPS 

Loss function CrossEntropyLoss (with class weights) 

Gradient clipping Max norm = 1.0 

LSTM layers 2 (unidirectional) 

Dropout rate 0.3 

Evaluation metrics Accuracy, F1-score (macro, weighted, micro), Confusion 
matrix 

 

Table 1. Training Configuration 

To address the class imbalance in MELD, class weights were computed from training label 

frequencies and incorporated into the loss function. During the early training phase, the 

MobileNetV2 backbone in RetinaFace was frozen to stabilize learning in the LSTM and 

classifier layers. After initial convergence, the backbone was unfrozen to enable full end-to-end 

fine-tuning. 

To support flexibility and reproducibility, all hyperparameters, training settings, and data paths 

were managed via a centralized configuration file (config.py), facilitating efficient tuning, 

structured experimentation, and multi-stage training strategies (e.g., freezing and unfreezing 

backbone layers). 

3.2 Design Evolution  
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The development of the final multimodal architecture involved several design iterations and 

practical trade-offs. This section outlines the progression of decisions that shaped the current 

system. 

Initially, the project adopted the End2You toolkit [8] for rapid prototyping. Its modular design, 

with support for audio and visual streams and built-in training pipelines, allowed us to quickly 

validate the feasibility of our approach. However, substantial limitations soon emerged. First, 

End2You required all input data to be converted into the .hdf5 format, a process that was both 

time-consuming and storage-intensive—preprocessing the MELD dataset was projected to 

exceed 200 GB. More critically, its visual pipeline did not support feeding both full-frame and 

cropped face images, which was essential for capturing both contextual and fine-grained facial 

cues. Modifying the internal structure to support this multi-stream input was neither intuitive nor 

clean. As a result, we discontinued the use of End2You and migrated to a custom PyTorch-based 

implementation for greater flexibility and modular control. 

For face detection, the initial solution was MTCNN [9], which has been widely adopted for 

accurate facial alignment. However, the implementation depended heavily on PIL (Python 

Imaging Library) image formats, which require image tensors to be moved from GPU to CPU for 

processing. This significantly limited the efficiency of our GPU-parallel training pipeline. 

Moreover, PIL-based I/O operations could not be easily serialized or batched, making MTCNN a 

major bottleneck when processing large batches of video frames during training. 

We then explored using YOLO-Face [10], a real-time face detection model based on YOLOv5. 

Although promising in terms of speed, the available open-source implementations were outdated, 

poorly documented, and frequently failed on corner cases within MELD, particularly involving 

non-frontal or low-resolution faces. Moreover, as YOLO was originally designed for general 

object detection across multiple object categories, its architecture and anchor settings are not 

specifically optimized for fine-grained, single-class detection tasks like facial region extraction. 

Due to these limitations, YOLO-Face was ultimately abandoned in favor of a more specialized 

solution. 
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Ultimately, we adopted RetinaFace [11] with a MobileNetV2 backbone as our face detection 

module. Although the official implementation was originally available only in TensorFlow, we 

referenced a reliable PyTorch reimplementation from GitHub, and further handcrafted a 

simplified and modular version tailored to our pipeline. This customized version maintained key 

components such as multi-scale feature maps and single-stage anchor-based detection, while 

reducing unnecessary dependencies and adapting input/output formats for seamless integration.  

In addition to architectural iterations, we also revised the temporal input formatting strategy. 

Initially, each utterance was processed using a fixed-length format (e.g., 2 seconds of audio and a 

fixed number of frames). This approach introduced inefficiencies: shorter utterances required 

heavy padding, while longer ones were truncated, leading to context loss. To improve flexibility 

while maintaining batching efficiency, we adopted a batch-wise dynamic padding strategy, where 

each mini-batch is padded according to the maximum sequence length within the batch, and 

overly long sequences are truncated to an average upper bound (e.g., 4 seconds). This balances 

memory usage and contextual coverage, reducing unnecessary padding while preserving 

important sequential information. 

An overview of design evolution across core components is shown in Table 2. 

Component Initial Approach Issue Encountered Solution 

Model framework End2You toolkit High storage demand, no 

dual-image input support 

Custom PyTorch pipeline 

Face detection MTCNN PIL-based, slow and 

non-serializable 

Replaced with RetinaFace 

Face detection YOLO-Face Unstable, outdated repo, poor 

detection on MELD faces 

Replaced with RetinaFace 

Input formatting Fixed 2s / fixed frames Excessive padding and 

context loss 

Dynamic batch-wise 

alignment 
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Table 2. Design Iteration Summary for Major Components 

3.3 Results 

We report the evaluation results of the model on the MELD dataset. While the model performs 

reasonably on dominant classes, such as neutral, it fails to generalize to minority emotions.  

3.3.1 Evaluation Metrics 

To evaluate the model’s performance, we used standard classification metrics including accuracy, 

precision, recall, and F1-score. Given the imbalanced nature of the MELD dataset, we report 

both macro-averaged and weighted-averagedF1-scores. Accuracy reflects the overall proportion 

of correct predictions, while macro-F1 gives equal weight to each class, highlighting 

performance on minority emotions. Weighted-F1 accounts for class imbalance by considering the 

relative frequency of each class. 

In addition to these metrics, a confusion matrix and per-class classification report were computed 

to provide a more detailed understanding of prediction patterns and class-wise performance. 

3.3.2 Experimental Results 

On the MELD test set, the model achieved an overall accuracy of 48.16%, with a macro-F1 score 

of 0.096 and a weighted-F1 score of 0.315. The per-class results are summarized in Table 3.1. 

The model demonstrated acceptable performance on the dominant class neutral (F1 = 0.65), but 

failed to generalize to minority classes such as fear, disgust, and sadness, with near-zero 

F1-scores. 

Notably, joy and anger exhibit unusually high precision but extremely low recall, suggesting that 

the model rarely predicts these classes, but when it does, the predictions are occasionally correct. 

Conversely, certain emotions such as fear and disgust are never predicted at all, resulting in zero 

recall and F1-score for these categories. 

This pattern of performance is likely due to several factors: the severe class imbalance present in 

the MELD dataset, the limited expressive capacity of the lightweight CNN+LSTM architecture, 
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and the lack of high-quality training examples for underrepresented emotions. In addition, due to 

time and computational resource constraints, we were unable to perform large-scale 

hyperparameter tuning or experiment with deeper or pretrained modules, which may have further 

impacted model generalization. 

 

Emotion Precision Recall F1-score Total 

Neutral 0.482 0.998 0.650 1254 

Joy 1.000 0.002 0.005 402 

Sadness 0.000 0.000 0.000 208 

Anger 0.750 0.009 0.017 345 

Surprise 0.000 0.000 0.000 281 

Fear 0.000 0.000 0.000 50 

Disgust 0.000 0.000 0.000 68 

Avg.  0.485 0.482 0.315 2608 

 

Table 3. Evaluation Results  

 

4. CONCLUSION AND FUTURE WORKS 

This project explored a lightweight multimodal approach for real-time emotion recognition, 

combining facial and audio features using CNN+LSTM architectures. The model was trained 

and evaluated on the MELD dataset, with carefully designed pipelines for data preprocessing, 

feature extraction, and modality fusion. Throughout the project, several implementation 

challenges were encountered, such as data imbalance, limited model capacity, and computational 

constraints. Solutions including class-weighted loss, sample-level data augmentation, and staged 

training were applied to mitigate these issues. 

The final model demonstrated acceptable performance on high-frequency emotion classes such 

as neutral, but failed to generalize to underrepresented categories like fear, disgust, and sadness. 
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Despite various optimization efforts, the performance gap between majority and minority classes 

remained significant. This outcome suggests that, while lightweight architectures are attractive 

for real-time applications, they may lack the representational capacity required for fine-grained 

emotion classification under real-world data conditions. 

Future work will focus on improving generalization and representation learning in several ways. 

First, we plan to evaluate the current model on the CREMA-D dataset [12], which contains more 

demographically diverse speakers and controlled emotional expression, in order to assess 

cross-domain robustness. Second, although class-balanced loss and data augmentation were 

already applied, their limited effectiveness suggests the need for stronger architectural strategies, 

such as deeper CNNs or attention-based fusion, to better capture emotional cues across 

modalities. Third, instead of relying on manually tuned or unstable detection outputs, we propose 

integrating a pretrained face detection module at the input stage to provide consistent and 

accurate facial crops. This design ensures that the model receives clean and well-aligned visual 

inputs, which are critical for downstream emotion classification 
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