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Abstract 

 
In today’s complex stock market, novice investors often face challenges in navigating financial 

platforms and extracting actionable insights due to information overload and high learning 

barriers. This project aims to develop an AI-driven financial management platform to empower 

retail investors through enhanced stock price forecasting and personalized investing. The 

platform integrates three predictive models: an LSTM-based model for binary stock price 

movement prediction (UP/DOWN), an ARIMA model as a baseline for numerical price 

forecasting, and a suite of deep learning models, with LSTM-BERT selected for final numerical 

predictions due to its superior performance (𝑅2 0.9378, RMSE 4.0892 for 7-day forecasts). 

These models leverage historical stock data and sentiment analysis from financial news, 

achieving an average LSTM accuracy of 60% for directional prediction and an ARIMA MAPE 

of 1.53% for numerical forecasts. A Django-based website consolidates these models, offering 

real-time stock updates, news, personalized recommendations, and a paper trading system, 

enabling users to practice trading without financial risk. Results demonstrate the platform’s 

effectiveness in delivering intuitive insights, though limitations such as sentiment data gaps 

and model biases highlight areas for improvement. This project bridges predictive analytics 

with investor decision-making, providing a scalable tool for novice investors to engage 

confidently with the stock market. 
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1 Project Background 

This chapter offers a detailed overview of the project, starting with its background and 

motivation, followed by a discussion of its objectives and requirements. 

 

1.1 Background 

The stock market serves as an essential tool for distributing capital throughout the economy, 

allowing businesses to secure funding while stock prices mirror collective investor opinions 

about a company’s present and future prospects. The task of forecasting stock prices has 

sparked significant discussion since the 20th century. According to the Efficient Market 

Hypothesis [1], outperforming the market is unfeasible in an efficient system where all 

market information is already embedded in stock prices. This idea aligns with the Random 

Walk Theory [2], which argues that the market’s efficiency renders short-term price 

predictions impractical. On the other hand, the Dow Theory [3] contends that technical 

analysis of historical trends and patterns can enable short-term forecasts. These theoretical 

perspectives have driven various attempts to predict stock market movements for better 

investment outcomes.  

 

The emergence of machine learning has introduced a range of predictive models leveraging 

diverse algorithms, with their effectiveness explored later in Section 2.3. Timely access to 

relevant data is increasingly critical for investors, as highlighted by both the Random Walk 

and Dow Theories. Platforms like Bloomberg [4], HKEX [5], and Yahoo! Finance [6] 

deliver real-time market updates and in-depth financial news to support informed 

investment choices. Likewise, trading platforms popular in Hong Kong, such as WeBull 

[7], Futu [8], and Longbridge [9], provide extensive features like market statistics, trading 

insights, and discussion forums. However, these tools often overwhelm beginners with their 

complexity, a problem exacerbated by steep costs—Bloomberg Terminal, for instance, 

charges around $27,660 annually [10]. 

 

To tackle these issues, this project focuses on building an accessible platform that aids 

novice investors in understanding market trends and enhances usability. It employs a 

machine learning model to consolidate data into a clear assessment of stock performance, 

using natural language processing (NLP) for sentiment analysis. Drawing on insights from 
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existing models (Section 2.3), this project compares approaches like LSTM networks and 

Transformer architectures to create a reliable predictive tool. The platform will also offer 

personalized investment suggestions and integrate a paper trading system, enabling 

beginners to practice trading while capturing user behaviour to tailor recommendations to 

individual risk preferences, which are inserted as individual user profiles by users. 

 

1.2 Project Objectives 

This section defines the aims and purpose of the AI-driven financial platform, designed 

specifically to support investors with less investing experience. The project’s goals include 

collecting and preparing data for machine learning model training, creating an intuitive user 

interface as a webpage, and developing a paper trading system with personalized 

recommendation features. The overarching aim is to launch a fully operational online 

platform that combines sentiment analysis, real-time market data display and prediction, 

and customized investment guidance to every individual investors. 

 

The initiative centres on building an AI-enhanced financial tool that merges a paper trading 

environment with two machine learning models for stock price and movement forecasting. 

Key steps involve gathering and processing data to ensure model accuracy, optimizing the 

model through extensive testing, and designing an interface prioritizing ease of use. The 

final platform will deliver a functional website that analyses market sentiment through 

analysing the collected financial news and stock trends, providing timely alerts on 

investment prospects. By leveraging various preference filters, the system will generate 

personalized strategies aligned with each user’s risk tolerance and preferences. 

 

1.3 Scope 

As the final year project’s scope is to develop a fully functional website integrated with the 

model within an eight-month timeframe, this interim report specifically covers the progress 

made during the first semester, with a primary focus on design and development of the NLP 

models, comparison between models, and the website prototype development. 

 

 

 



 
   
 

3 

 

1.4 Project Milestones and Status 

The project is currently on schedule and has completed all proposed tasks and phases. Stage 

1: Project Setup and Literature Review, Stage 2: Model Preparation and Training, 

and Stage 3: Model Enhancement and Application Development have all been finished. 

Details of the project schedule and its status are provided in Table 1 (Project Schedule). 

 

Table 1. Project Schedule with Descriptions and Status 

Schedule 
Milestones 

(number of learning hours) 
Status 

Phase 1: Project Inception 

2024 Sep 

• Preparation of 

Project Plan (10) 

• Literature Review 

(10) 

• Setup of Project 

Website (10) 

Deliverables: 

1. Detailed Project Plan 

2. Project Website Setup 

DONE 

Phase 2: Project Elaboration 

2024 

Oct 

• Model Selection and Determination (10) 

• Model Data Collection including numerical and textual 

data (10) 

• Data Pre-processing and Cleaning (25) 

DONE 

Nov 
• Feature Extraction and Determination (15) 

• Model Training (20) 
DONE 

Dec 

• LSTM-BERT Model Integration (10) 

• Model Performance Evaluation and Reporting (10) 

• Front-end Basic Webpage Design and Style Selection 

(10) 

DONE 

2025 Jan 

• Interim Report 

Drafting (20) 

• Model Performance 

Evaluation (10) 

• Front-end Basic 

Webpage Design and 

Style Selection (10) 

Deliverables: 

1. Preliminary Trained 

Model Prototype 

2. Interim Report 

3. First Presentation 

DONE 

Phase 3: Project Construction  

2025 Feb 

• Prediction Model Enhancement and Modification (20) 

• Baseline Model Building and Evaluation (20) 

• Application Frontend and Backend Construction (20) 

DONE 
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• Construction and Determination of the User-definable 

Trading Preference Rules (10) 

Mar 

• Baseline Model Building and Evaluation (10) 

• Personalized Recommendation System (10) 

1. Recommendations generation 

2. Optimization and Enhancement 

• Paper Trading system performance evaluation and 

optimization (10) 

• Final Report Drafting (10) 

• Application Frontend and Backend Construction (15) 

• Software Review and Testing (15) 

DONE 

Apr 

• Final Software 

Debugging and 

Testing (10) 

• Final Report 

Drafting (30) 

• Project Video 

Construction (10) 

• Preparation of 

Project Poster (10) 

Deliverables: 

1. Project Exhibition – 3-

min Video 

2. Project Exhibition – 

Poster Preparation 

3. Final Report 

4. Final Product 

5. Final Presentation 

PARTLY 

DONE 

 

 

1.5 Project Contribution 

Group 
Member 

Contribution to the Project 

LAM NGOK 

FUNG 

HERMAN 

• Project Webpage Construction 

• Stock Price Movement Prediction Model – Binary 

Classification using LSTM 

o Data Collection and Pre-processing 

o Feature Selection and Processing 

o Model Construction and Training 

o Model Evaluation 

• Stock Price Prediction Baseline Model – ARIMA 

o Data Collection and Pre-processing 

o Model Construction and Fitting 

o Model Evaluation 

• Personalized Recommendation System Design 

WANG YU 

JING 

• Stock Website Construction 

o Frontend 

▪ UI Design & Implementation 

o Backend 
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▪ Database Design & Construction 

▪ Integration of Trained Models & Data Input & Website 

▪ Stock Data & News Collection & Periodically Updates 

▪ Login/Signup System 

• LSTM-BERT Model Training 

• Testing & Bug Fixing 

• Paper Trading System Design & Implementation 

• Personalized Recommendation System Design & Implementation 

SUN HAO YU • Model Construction and Training of Stock Price Prediction  

• Report Writing and Early organizations of team work 

• Code Testing and Bug fixing 

• Marginal Contribution in Data Collection Design 

MUHAMMAD 

GHASSAN 

JAWWAD 

Designed and implemented a dynamic stock data pipeline that collects, 

cleans, and structures real-time financial news and historical stock 

prices from multiple APIs (Finnhub, and NewsAPI). 

Developed a modular news aggregation system combining: 

• Finnhub for historical news (up to 1 year) 

• NewsAPI for high-resolution daily headlines (last 30 days) 

Wrote scripts to embed the entire pipeline into the Django backend via 

custom management commands: update_news for daily news updates. 

Engineered data deduplication, formatting, and CSV exports, 

generating clean datasets for: NLP processing (headline + summary) 

Built scalable architecture supporting multiple stocks, easy expansion 

to new tickers, and reusable code modules for future forecasting or 

trading tools. 

Enabled model-ready datasets stored in: 

• news_data/{SYMBOL}_news_from_2025.csv 

• price_data/{SYMBOL}_price_history.csv 

Updated the FYP webpage online and completion of final 

presentation.  

 

1.6 Report Organization 

This report is structured as follows: Chapter 2 provides a detailed overview of the project 

background, literature reviews, and the project's strengths and improvement. Chapter 3 

outlines the methodology for data collection, model development, and the construction of 
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the overall AI-embedded web application. Chapter 4 discusses the results obtained, 

difficulties, and current limitations, including those related to model construction and 

website development. Additionally, Chapter 5 presents the project status and outlines future 

work. Finally, Chapter 6 concludes the report. 
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2 Project Background and Literature Review 

This chapter provides an in-depth exploration of the project’s context, identifying challenges 

faced by retail investors, limitations of current investment platforms, and literature review, 

followed by a discussion of how this project addresses the issues and its strengths. 

 

2.1 Project Background 

This section outlines the key difficulties retail investors encounter in navigating the stock 

market, focusing on issues of information overload, complex financial disclosures, and 

poor performance trends in specific markets. 

 

2.1.1 Information Overload 

Retail investors frequently face an overwhelming amount of financial data from online 

sources, which complicates decision-making. Research by Barber and Odean indicates 

that an abundance of information can overwhelm investors, leading to reduced trading 

activity [11]. This deluge of data, ranging from stock prices to news updates, often 

leaves novice investors unable to distill actionable insights, resulting in hesitation or 

suboptimal choices. The sheer volume of available information, while beneficial in 

theory, becomes a practical barrier for those lacking the expertise to filter it effectively. 

 

2.1.2 Complexity of Financial Disclosures 

Financial disclosures, such as annual reports and earnings statements, are typically 

lengthy and laden with technical jargon, posing a significant challenge for retail 

investors. This complexity creates an entry barrier, discouraging participation in stock 

markets and widening the gap between professional and retail investors. Simplifying 

access to and interpretation of such disclosures is thus critical to empowering a broader 

investor base. 
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2.2 Limitations of Existing Investment Platforms 

This section evaluates the shortcomings of current investment platforms, emphasizing their 

impact on novice investors and the need for more accessible tools. 

 

2.2.1 Scattered Information Sources 

Current investment platforms often require users to consult multiple sources for 

comprehensive data, such as WeBull for trading and Futu for market insights. This lack 

of a unified interface fragments the user experience, making it cumbersome for novices 

to gather and analyse information efficiently. The absence of a centralized system 

increases the time and effort required to make informed decisions, particularly for those 

unfamiliar with navigating disparate tools. 

 

2.2.2 Lack of Intelligent Guidance 

Most platforms fail to leverage user behaviour or preferences to offer personalized 

investment advice. Without intelligent guidance, retail investors must independently 

interpret complex datasets, increasing the risk of poor choices. This gap in adaptive 

support limits the platforms’ utility for beginners, who need tailored recommendations 

to navigate the financial landscape effectively. 

 

2.2.3 Cost Barriers 

Access to premium financial tools and real-time data often comes with significant costs, 

such as the $27,660 annual subscription for a Bloomberg Terminal [10]. These 

expenses exclude budget-conscious retail investors from leveraging high-quality 

resources. Affordable alternatives are essential to build access to sophisticated financial 

insights. 

 

2.2.4 High Learning Barrier 

The prevalence of sophisticated financial terminology and advanced analytical tools on 

existing platforms creates a steep learning curve. Non-professional investors often find 

these features inaccessible, reducing their confidence and engagement. Simplifying 

these interfaces and providing intuitive explanations could bridge this gap, making 

investment more approachable for a wider audience.  
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2.3 Literature Review 

This section reviews recent advancements in AI and NLP for financial forecasting, 

identifies shortcomings in existing academic models. 

 

2.3.1 Advances in AI and NLP for Finance 

The rapid progress in ML and NLP technologies has profoundly reshaped approaches 

to stock market forecasting, paving the way for more accurate predictions. Numerous 

studies have investigated a variety of architectures and methods, each adding valuable 

contributions to the dynamic field of finance. Gu et al. (2024) proposed a FinBERT-

LSTM model that integrates sentiment analysis of financial news with stock prediction, 

surpassing traditional methods in accuracy [12]. Furthermore, Zong and Zhou 

developed the Multimodal Stable Fusion with Gated Cross-Attention (MSGCA) model, 

which combines financial indicators, dynamic texts, and graph relationships, achieving 

an accuracy improvement of 8.1–31.6% across various datasets [13]. These 

advancements highlight AI’s potential to enhance predictive capabilities in finance. 

 

Apart the multi-modal approach, a notable study by Selvin et al. explored the 

performance of deep learning frameworks, such as CNNs employing a sliding window 

technique, RNNs, and LSTM networks, in forecasting stock prices using real-time data. 

Their analysis revealed that the CNN model consistently outperformed its counterparts, 

a result attributed to its superior capability in detecting sudden market volatility, thus 

demonstrating its resilience in unstable market environments [14]. 

 

Expanding on the role of sentiment in financial forecasting, Mohan et al. enhanced the 

precision of sentiment analysis within deep learning systems by assembling a 

comprehensive dataset covering over five years, encompassing more than 265,000 

financial news articles. Their work highlighted the importance of high-quality, 

extensive datasets in improving the effectiveness of sentiment-driven models [15]. This 

approach illustrates the growing need for large-scale data aggregation to capture market 

sentiments effectively. 

 

Additionally, Qing et al. investigated the use of Transformer models for stock price 

prediction, introducing modifications to the traditional Transformer architecture by 
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reducing redundant heads in the transformer’s self-attention mechanism. These 

adjustments enabled their model to better capture long-term dependencies in financial 

time series data, outperforming LSTM networks in some particular scenarios requiring 

temporal analysis [16]. This advancement points to the potential of Transformer-based 

models to address the limitations of earlier architectures in handling prolonged market 

trends. 

 

Collectively, these research efforts demonstrate the remarkable progress in applying 

cutting-edge ML and NLP techniques to stock market prediction. The evolving 

approaches not only improve forecasting accuracy but also reveal the critical 

connection between sentiment analysis and financial prediction, laying a solid 

foundation for developing more advanced and integrated forecasting systems in the 

financial domain. 

 

2.3.2 Shortcomings of Existing Academic Models 

Despite the impressive progress, current models face different significant limitations. 

High computational demands, as seen in MSGCA, require multi-modal data fusion and 

GPU-intensive training, restricting its scalability [13]. Additionally, outputs are often 

presented as raw probabilities or classifications, lacking context or user-friendly 

formats for retail investors. Many models also overlook individual investor behaviour, 

which is critical for personalization, and remain standalone prototypes without 

integration into practical trading systems. These gaps limit their real-world applicability. 
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2.4 Project’s Strengths and Improvements 

This subsection outlines the key strengths of the proposed AI-driven financial management 

platform, highlighting how it addresses the limitations of existing models through a 

lightweight design, user-friendly outputs, personalized recommendations, and an integrated 

system. 

 

2.4.1 Lightweight Model Design 

The project prioritizes a lightweight design by leveraging BERT and LSTM models for 

sentiment analysis and stock price forecasting. Our approach focuses on text-based 

NLP and traditional machine learning techniques. BERT, a pre-trained model which 

extracts sentiment from news articles and social media efficiently, while LSTM 

captures temporal dependencies in stock price data with small computational overhead. 

This design choice significantly reduces training complexity and deployment costs, 

making the system accessible for retail investors without requiring high-end hardware. 

By avoiding the need for extensive multi-modal integration, the platform ensures 

scalability, allowing it to handle predictions for multiple NASDAQ stocks without 

excessive resource demands. This efficiency aligns with the project’s goal of providing 

an affordable solution for novice investors, who often lack access to premium tools due 

to cost barriers. 

 

2.4.2 Human-Centered Output Format 

To enhance usability, the project emphasizes human-centered outputs tailored for retail 

investors. The platform provides intuitive visualizations such as sentiment trend lines 

and predicted stock movement direction levels. Sentiment trend lines, derived from 

BERT’s analysis of financial news, illustrate the emotion over time, helping users 

understand market sentiment at a glance. Furthermore, for the stock price movement 

prediction labels, it constantly tracks the past history of stock prices and various 

financial indicators to provide a simple classification label for users. These features 

address the high learning barrier identified in existing platforms. By presenting data in 

a visually digestible manner, the platform empowers users to make decisions without 

requiring deep financial expertise. 
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2.4.3 Personalized Recommendations 

The platform incorporates personalized recommendations by learning from user 

preferences and behaviour, addressing the lack of intelligent guidance in existing 

systems. Users are required input their risk aversion levels, expected returns, and sector 

preferences through a dedicated profile page in the webpage. The system then filters 

stock predictions, which are generated by the LSTM model for directional forecasting 

and the LSTM-BERT model for numerical price predictions, based on the inserted 

criteria. The platform outputs actionable advice (BUY, SELL, HOLD), ensuring 

recommendations align with individual risk profiles. This personalization enhances 

decision-making for novices. 

 

2.4.4 All-in-One Integrated Platform 

The project delivers an all-in-one integrated platform, combining news analysis, 

sentiment modelling, paper trading, stock price forecasts, and personalized feedback 

within a single website. The news sentiment scores and stock price movement 

predictions from the trained models are displayed alongside interactive charts. 

Personalized feedback, derived from user interactions and the collected user 

preferences, further refines recommendations, fostering a continuous learning 

environment. This holistic approach addresses the scattered information sources of 

various existing platforms, offering retail investors a comprehensive tool for learning, 

analysis, and decision-making. 
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3 Methodology 

 
In this chapter, Section 3.1 outlines the various models planned for development within the 

project’s modelling framework. Section 3.2 provides a detailed discussion of the machine 

learning model architectures employed. Section 3.3 describes the structure and functionality of 

the personalized investment recommendation system. Section 3.4 details the implementation 

process for the paper trading system. Finally, Section 3.5 explains the approaches used for 

building the website’s frontend and backend components. 

 

3.1 Overall Modelling Process 
 

To meet the varied requirements of users, multiple predictive models have been created 

and deployed, each customized to align with distinct investment goals. The modeling 

framework is organized into three primary components: 

 

3.1.1. Predicting Stock Price Direction Using LSTM Model 

This model tackles the binary classification challenge of determining whether a stock’s 

price will increase or decrease on a daily basis, simplifying decision-making for certain 

investor groups by providing straightforward outcomes. 

 

The first component involves developing a LSTM-based model to predict the 

directional movement of stock prices, categorizing the outcome as either an increase or 

decrease for a daily forecast horizon. This binary classification approach is particularly 

tailored for cautious investors, such as retirees or risk-averse individuals, who prefer 

clear and simple indicators before engaging in more complex numerical forecasts. By 

focusing on a binary outcome—rise or fall—the model reduces the cognitive burden on 

these investors, enabling them to make decisions with greater confidence. The rationale 

for prioritizing this basic classification step stems from the need to establish a 

foundational understanding of market trends before delving into intricate numerical 

predictions. Such an approach ensures that investors, especially novices, can grasp 

fundamental market movements without being overwhelmed by detailed quantitative 

data. The use of LSTM in this context leverages its ability to capture temporal 
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dependencies in sequential data, making it well-suited for identifying short-term 

patterns in stock price movements. 

 

3.1.2. Forecasting Stock Prices in Numerical Values Using a Statistical 

Model 

This component focuses on employing a statistical model, specifically Autoregressive 

Integrated Moving Average (ARIMA), to predict stock prices numerically, highlighting 

its role as a baseline for comparison with the latter deep learning models. 

 

The second component employs a statistical model, specifically the ARIMA model, to 

forecast stock prices numerically. The inclusion of a statistical baseline is crucial for 

establishing a benchmark against which more complex deep learning models can be 

evaluated. ARIMA was chosen for its simplicity, interpretability, and established 

effectiveness in time series forecasting, particularly for financial data with linear trends. 

It models the relationship between a stock’s past prices and its future values using 

autoregressive and moving average components, while the integration step 

(differencing) ensures stationarity, which is a key requirement and assumption for 

reliable predictions.  

 

Using ARIMA as a baseline is essential because it provides a reference point to quantify 

the improvements offered by deep learning models, which often require more 

computational resources and data. Furthermore, ARIMA’s ability to handle short-term 

forecasts makes it a suitable starting point for understanding stock price dynamics 

before introducing models that incorporate external factors like market sentiment. This 

step ensures a rigorous comparison, allowing us to assess whether the added complexity 

of deep learning models yields significant performance gains over traditional statistical 

methods. 
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3.1.3. Forecasting Stock Prices in Numerical Values Using a Deep 

Learning Model 

This component utilizes deep learning to predict numerical stock prices, integrating 

external factors such as market news, and compares multiple models to select the most 

effective one for forecasting. 

 

The third component involves the application of deep learning models to predict stock 

prices numerically, incorporating external factors like market news and sentiment to 

improve accuracy and better reflect the intricacies of real-world financial systems. To 

ensure optimal performance, a total of six distinct deep learning models will be 

developed and evaluated, including variations of LSTM, GRU, CNN, and Transformer 

architectures. These models will be trained and tested, and their performance will be 

compared using metrics such as RMSE, MAE, and MAPE. The model demonstrating 

the highest predictive accuracy will be selected for the final forecasting task. This 

comparative approach ensures that the chosen model not only leverages market 

sentiment and other external data but also provides the most reliable predictions, 

enhancing the platform’s ability to deliver actionable insights for investors. 

 

3.1.4. Overall Different Modelling Purposes 

Each of these strategies has been carefully crafted to meet varying user needs, ensuring 

a comprehensive approach to stock market forecasting. For instance, the binary 

classification model delivers straightforward directional insights, ideal for quick 

decision-making, while the deep learning-based forecasting model, enriched with 

sentiment data, offers a more comprehensive perspective by integrating diverse 

information sources, such as market news and social media trends. By employing 

multiple models and conducting thorough performance evaluations on a consistent 

dataset, this project enables a systematic comparison of forecasting techniques. This 

iterative process facilitates the identification of the most effective model, allowing for 

continuous refinement and optimization to better serve investors across different 

experience levels and investment goals. 
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3.2 Machine Learning Models 
 

This section outlines the methodologies applied in developing three fundamental machine 

learning models central to the project’s objectives. The first model focuses on directional 

forecasting using LSTM networks to provide investors with essential insights into stock 

price movements. The second model delivers numerical stock price predictions via a 

statistical approach, establishing a baseline for comparison. The third model enhances 

numerical forecasting by integrating sentiment analysis from financial news, enriching the 

input data for deep learning frameworks. Each model’s development process is detailed in 

the subsections below, highlighting the techniques used to achieve reliable predictions. The 

implementation and initial findings for directional and numerical price forecasting are 

discussed in Section 4. 

 

3.2.1 Stock Price Direction Forecasting Model 
 

This subsection provides a comprehensive overview of the dataset, preprocessing 

methods, and labeling strategy for the stock price direction forecasting model. The 

model tackles the binary classification task of predicting daily stock price movements 

using LSTM, laying a foundational step for subsequent models. It is particularly 

designed for novice investors who benefit from understanding price direction before 

engaging with complex numerical forecasts, thus enabling strategic decision-making in 

a volatile market environment. 

 

The initial model in this project employs Long Short-Term Memory (LSTM) networks 

to address the binary classification challenge of predicting whether the daily stock price 

of various securities will rise or fall. This directional forecasting model serves as a 

critical starting point for the project’s predictive framework, offering an entry into stock 

market analysis. Specifically, it caters to novice investors, such as those new to trading 

or with limited risk tolerance, by providing a clear and binary outcome—either an 

upward or downward movement. This simplicity is crucial as it allows beginners to 

grasp essential market trends without being overwhelmed by intricate numerical 

predictions, which are introduced in later models. The rationale for prioritizing this 

binary classification step lies in its role as a foundational tool. For instance, knowing 
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whether a stock is likely to increase in value can inform an investor’s decision to 

explore further details, such as the expected price range. By leveraging LSTM’s 

capability to model temporal dependencies in sequential data, this model captures short-

term patterns in stock price movements, enabling investors to make decisions in a 

dynamic and often unpredictable market. 
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3.2.1.1 Data Collection and Train-Validation-Test Splitting 
 

The stock price direction forecasting model is designed to predict future price 

movements of stocks listed in the Nasdaq stock market index, focusing exclusively on 

the 10 top companies with the highest Nasdaq portfolio share to ensure relevance and 

data availability. The dataset is sourced through the Yahoo! Finance API in Python, 

where each data point corresponds to a single trading day. These data points include 

daily metrics such as opening, closing, high, and low prices, as well as trading volume. 

To maintain accuracy, the closing prices are adjusted to account for corporate actions 

like stock splits and dividend payments, ensuring the dataset reflects true market 

performance over time. 

 

The dataset covers a period from January 1, 2010, to December 31, 2024, spanning 

3,773 trading days. To optimize model training and performance, the dataset is divided 

into three subsets: 70% for training (approximately 2,641 days), 15% for validation 

(approximately 566 days), and 15% for testing (approximately 566 days). This split 

introduces a validation set to facilitate early stopping during model training. Early 

stopping monitors the model’s performance on the validation set, halting training when 

the validation loss ceases to improve, thus reducing the effect of overfitting and 

ensuring the model generalizes well to unseen data. This approach is particularly 

beneficial for LSTM models, which are prone to overfitting due to their complexity, 

and it enhances the robustness of the model by balancing training efficiency with 

predictive accuracy. The training set is used to fit the model, the validation set to tune 

hyperparameters and implement early stopping, and the test set to evaluate the model’s 

final performance, ensuring a comprehensive assessment of its predictive capabilities. 

 

3.2.1.2 Data Preprocessing: Heikin-Ashi Candlestick 

Transformation 

After data collection, a pivotal preprocessing step involves converting the raw stock 

price data into Heikin-Ashi candlesticks, a technique aimed at enhancing the quality of 

the input data for forecasting stock price movements. Heikin-Ashi candlesticks are 

specifically engineered to smooth out price volatility, thereby improving the detection 

of underlying trends by mitigating market noise and providing a clearer picture of price 
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direction. This method is particularly advantageous for directional forecasting, as it 

reduces the likelihood of misleading signals often encountered with traditional 

candlestick patterns, which can be distorted by short-term price fluctuations. 

 

The transformation process entails specific calculations for each trading day. The 

Heikin-Ashi closing price is determined by averaging the day’s open, close, high, and 

low prices, creating a balanced representation of price behavior. The opening price for 

a Heikin-Ashi candlestick is computed as the average of the previous day’s Heikin-

Ashi open and close values. The high and low prices are calculated by taking the 

maximum and minimum values respectively, among the current day’s high, low, 

Heikin-Ashi open, and Heikin-Ashi close, capturing the range of price movement while 

maintaining the smoothing effect. Through these computations, the dataset is converted 

into a Heikin-Ashi format, which offers a more stable and trend-focused foundation for 

subsequent analysis. This preprocessing step not only enhances the model’s ability to 

identify persistent market trends but also improves the reliability of directional 

predictions, making it an essential component of the forecasting pipeline for novice 

investors seeking clear and actionable insights. 

 

3.2.1.3 Data Preprocessing: Feature Engineering 

To enhance the predictive accuracy of the stock price direction forecasting model, a 

carefully selected set of technical indicators and market-related features has been 

derived from the Heikin-Ashi transformed data and integrated as input features. These 

features provide significant advantages by simplifying the noisy information inherent 

in stock price data, such as price trends, momentum, and market relationships, into 

interpretable metrics. By encapsulating essential elements of market behavior, 

including trends, momentum, volatility, and broader market dynamics, these features 

enable the model to detect meaningful patterns and improve the reliability of 

predictions. The inclusion of both stock-specific and market-wide indicators ensures a 

more holistic understanding of the factors influencing stock price direction, thereby 

strengthening the model’s forecasting framework. 

 

A total of seven features have been selected, each chosen for its specific contribution 

to capturing market dynamics. Among the trend-based indicators, the Exponential 
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Moving Average (EMA) smooths price data to reveal the underlying trend direction, 

making it easier to identify whether a stock is in an upward or downward trajectory 

over the specified window. The Average Directional Movement Index (ADMI) 

quantifies the strength of the identified trend, providing insight into whether the trend 

is robust enough to influence price direction. For momentum indicators, the Stochastic 

K% and Stochastic D% are both employed to assess the speed and sustainability of 

price movements, helping to identify overbought or oversold conditions that may signal 

potential reversals in price direction. These indicators collectively offer a view of stock-

specific trends and momentum, which are critical for predicting short-term directional 

movements. 

 

To incorporate broader market context, the Closing Market Index of Nasdaq over the 

same window is included as a feature, reflecting the overall market environment in 

which the stock operates. Additionally, the VIX Index dataset for the same period is 

integrated to capture market volatility, often referred to as the "fear gauge", which 

influences investor sentiment and stock price movements. Furthermore, a key market-

related feature is the Rolling Stock Beta, which measures the stock’s sensitivity to 

market movements. Beta (𝛽) is calculated using the following equation (Equation 1): 

 

Equation 1. Equation to calculate stock's beta 

𝛽 =
𝐶𝑜𝑣(𝑅𝑠𝑡𝑜𝑐𝑘 , 𝑅𝑚𝑎𝑟𝑘𝑒𝑡)

𝑉𝑎𝑟(𝑅𝑚𝑎𝑟𝑘𝑒𝑡)
 

 

where 𝑅𝑠𝑡𝑜𝑐𝑘 and 𝑅𝑚𝑎𝑟𝑘𝑒𝑡 are the daily returns of the stock and the market (Nasdaq 

index), respectively, computed as percentage changes in the closing price and the 

Nasdaq closing index. The covariance and variance are calculated over a rolling 

window of 252 trading days, aligning with standard financial practice for annual beta 

estimation. Including beta allows the model to assess how closely a stock’s price 

movements correlate with the broader market, providing critical insight into systemic 

risk exposure. The addition of market-related features like beta, the Nasdaq index, and 

the VIX ensures the model captures not only stock-specific dynamics but also the 

broader market environment, enhancing its ability to predict directional shifts in a more 

comprehensive manner. 



 
   
 

21 

 

 

By integrating these features, the model gains a multidimensional perspective on 

market behavior. The combination of stock-specific indicators and market-wide metrics 

creates a balanced framework that accounts for both internal stock dynamics and 

external market influences, thereby improving the overall robustness and accuracy of 

the directional forecasting model. 

 

3.2.1.4 Data Preprocessing: Feature Standardization 
 

Feature standardization is applied to normalize all input features, ensuring they exhibit 

a mean of zero and a unit variance, which is a critical step for enhancing the predictive 

model’s performance and stability. This normalization process mitigates biases that 

arise from varying scales among the input features. During model training, 

standardization facilitates faster convergence of gradient-based optimization 

algorithms by ensuring that features contribute proportionally to the learning process, 

preventing those with larger numerical ranges from disproportionately influencing the 

model compared to features with smaller ranges, thereby improving the model’s ability 

to learn meaningful patterns in the data. This step is especially crucial for directional 

forecasting, as it allows the model to focus on the relative relationships between 

features rather than their absolute magnitudes, leading to more robust predictions of 

stock price movements. 

 

3.2.1.5 Data Labelling 
 

The labeling of the target variable involves assigning a distinct label to each valid data 

point, corresponding to a single trading day, based on the movement of the adjusted 

closing price. A label of ‘UP’ is assigned to a data point if the closing price on that day 

is higher than the previous day’s closing price, indicating a price increase, while a label 

of ‘DOWN’ is applied if the closing price decreases compared to the prior day. By 

focusing on price direction rather than magnitude, this method enables investors to 

make straightforward decisions without needing to interpret the relatively noisy 

numerical forecasts. 
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3.2.1.6 Model Architecture 
 

The Long Short-Term Memory (LSTM) model is employed for predicting stock price 

direction due to its exceptional ability to capture long-term dependencies in sequential 

time series data, such as financial stock data. Unlike traditional Recurrent Neural 

Networks (RNNs), which often struggle with issues like vanishing gradients during 

backpropagation, LSTMs are engineered to retain information over extended time 

periods, making them ideal for time series analysis where past trends significantly 

influence future outcomes. This capability allows the LSTM to effectively identify 

patterns in stock prices, which are often driven by nonlinear dynamics and external 

factors such as market sentiment, macroeconomic events, and investors’ behavior. The 

model’s proficiency in handling these complexities ensures reliable forecasts in the 

volatile financial markets. 

 

To improve the model’s robustness and prevent overfitting, a set of dropout layers is 

incorporated into the architecture using the Keras library in Python. Dropout randomly 

deactivates a subset of neurons during training, forcing the model to learn more 

generalized features that are less dependent on specific inputs, thereby enhancing its 

performance on unseen data.  

 

Additionally, the binary cross-entropy loss function is utilized to optimize the model 

during training. This loss function measures the difference between predicted 

probabilities and actual labels, enabling the model to refine its predictions, thus 

improving its precision in forecasting directional movements. 

 

To further enhance model performance, an early stopping mechanism is implemented, 

monitoring the validation loss during training. Early stopping halts the training process 

when the validation loss ceases to decrease, reducing the chances of overfitting and 

ensuring the model generalizes well to new data. This technique leverages the 

validation set to assess the model’s performance on unseen data, balancing training 

efficiency with predictive accuracy. Furthermore, a Grid Search approach is employed 

to optimize the hyperparameters of the LSTM and Dense layers, specifically the number 

of hidden units. Various configurations are systematically tested, and the model’s 



 
   
 

23 

 

performance is evaluated based on validation accuracy. Only the model yielding the 

highest validation accuracy is selected for the final prediction task. This optimization 

process, combined with early stopping, ensures that the model is both accurate and 

efficient, providing investors with reliable directional insights to support their own 

financial decision-making. 
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3.2.2 Baseline Numerical Stock Price Prediction Model Using ARIMA 

 
This subsection outlines the development of the second component of the project’s 

modeling framework, focusing on a statistical approach using the ARIMA model to predict 

numerical stock prices. It serves as a baseline for comparison with deep learning models, 

providing a simpler but effective method for forecasting stock prices. 

 

3.2.2.1 Overview of the ARIMA Approach 

 

The Autoregressive Integrated Moving Average (ARIMA) model is a widely adopted 

statistical method for time series forecasting, particularly suited for financial data such 

as stock prices. ARIMA combines three components: Autoregression, Integration, and 

Moving Average, denoted as ARIMA(𝑝,𝑑,𝑞), where 𝑝 is the order of the autoregressive 

term, 𝑑 is the degree of differencing, and 𝑞 is the order of the moving average term. 

 

The autoregressive component models the relationship between a time series and its 

lagged values, which can be represented as: 

Equation 2. Autoregressive Component of the ARIMA Model 

𝑦𝑡 = 𝜙1𝑦𝑡−1 +𝜙2𝑦𝑡−2 +⋯+𝜙𝑝𝑦𝑡−𝑝 + 𝜖𝑡 

where 𝑦𝑡 is the stock price at time 𝑡, 𝜙 are the autoregressive coefficients, and 𝜖𝑡 is the 

noise. 

 

The moving average component models the relationship between the series and past 

forecast residuals: 

Equation 3. Moving Average Component of the ARIMA Model 

𝑦𝑡 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 +⋯+ 𝜃𝑞𝜖𝑡−𝑞 

where 𝜃 are the moving average coefficients. 

 

The integration component (𝑑) involves differencing the series to achieve stationarity, 

which is an assumption for ARIMA modeling. For a series 𝑦𝑡, first-order differencing 

(𝑑 = 1) is computed as: 
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Equation 4. The First Order Differencing Formula for ARIMA Model 

𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1 

 

ARIMA’s strengths lie in its simplicity and interpretability, making it an ideal baseline 

for financial forecasting. It effectively captures short-term linear trends in stock price 

data, requiring minimal computational resources compared to deep learning models. 

The model relies on historical data alone, without needing external features like market 

sentiment, which simplifies its implementation. 

 

3.2.2.2 Data Collection and Train-Test Split 

 

The ARIMA model utilizes historical stock data from the Nasdaq, focusing on the top 

10 stocks by the weight in Nasdaq’s portfolio. The dataset is retrieved via the Yahoo! 

Finance API using Python’s yfinance library, with each data point representing a single 

trading day. Missing values are removed to maintain data integrity, and the resulting 

dataset spans from January 1, 2020, to April 17, 2025, covering approximately 1,300 

trading days. 

 

The dataset is partitioned into training and testing sets to facilitate model development 

and evaluation. A split of 70% for training and 30% for testing is adopted based on the 

total dataset size. This split ensures that the training set captures a substantial portion 

of historical trends, allowing the ARIMA model to learn patterns effectively, while the 

testing set provides a sample for assessing predictive performance on unseen data. This 

division balances the need for sufficient training data with a meaningful evaluation 

phase, ensuring the model’s reliability for numerical stock price predictions. 

 

3.2.2.3 Feature Engineering 

Feature engineering for the ARIMA model is streamlined to focus on the closing price 

as the sole input feature. As ARIMA models are designed to capture patterns within a 

single time series, leveraging its historical closing values to predict future prices is 

crucial. By using only the closing price, the model avoids the complexity of 

incorporating external features. The simplicity of this approach ensures that the model 
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remains computationally efficient and interpretable, making it a baseline for 

comparison with more complex deep learning models. 

 

3.2.2.4 Stationarity Test 

 

A crucial step in preparing the data for ARIMA modeling is ensuring stationarity, as 

the model assumes that the time series has a constant mean, variance, and 

autocorrelation structure over time. To verify this, the Augmented Dickey-Fuller (ADF) 

test is applied to the closing price time series before and after first-order differencing. 

Stationarity is essential as trends and seasonality may distort the model’s ability to 

capture true patterns. Differencing is used to remove trends and stabilize the mean, 

making the series stationary. In ARIMA, the differencing parameter (𝑑) specifies the 

number of times this operation is applied. 

 

The ADF test assesses the stationarity of the input series, where the null hypothesis 

(𝐻0) posits that the series is non-stationary, and the alternative hypothesis (𝐻1) 

suggests stationarity. The test is performed on the original closing price time series and 

the first-order differenced series. For each stock, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is computed: a p-value 

less than 0.05 leads to rejecting the null hypothesis, while a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 greater than 

0.05 indicates non-stationarity. This test ensures that the ARIMA model’s assumption 

of stationarity is met and validating the choice of 𝑑. 

 

3.2.2.5 Model Training and Parameter Setting 

 

The ARIMA model is trained using two configurations to capture different temporal 

dependencies in stock price data, which are the ARIMA(7,1,0) for the 7-day prediction 

and ARIMA(15,1,0) for the 15-day prediction. The parameter 𝑝 is set to 7 and 15 

respectively to reflect the number of lagged observations considered in the model. 

These values are chosen to align with the look-back periods of 7 and 15 days, capturing 

short-term and medium-term price patterns. The differencing parameter (𝑑 = 1) is 

selected based on the stationarity test results, where first-order differencing consistently 

achieves stationarity (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) for all stocks, as confirmed by the ADF test. 
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The moving average parameter (𝑞 = 0) is set to simplify the model, as stock price data 

often exhibits strong autoregressive behavior. 

 

This configuration balances model complexity with predictive power, providing a 

reliable baseline for numerical stock price forecasting while ensuring computational 

efficiency during training. 

 

3.2.2.6 Prediction and Evaluation Metrics 

 

The ARIMA model generates numerical stock price predictions using a rolling forecast 

approach, where the model is initially trained on the training set and then iteratively 

updated with each test observation to predict the next day’s price. The model’s 

performance is evaluated using three standard metrics: Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). 

RMSE measures the square root of the average squared differences between predicted 

and actual prices. MAE calculates the average absolute differences, providing a 

straightforward measure of prediction accuracy. MAPE expresses the average absolute 

error as a percentage of the actual values. 

 

For each stock, these metrics (RMSE, MAE, MAPE) are computed and stored, enabling 

a comprehensive assessment of the model’s predictive accuracy. The results are saved 

as bar charts, facilitating visual comparison across all 10 Nasdaq stocks. These metrics 

are crucial for the later comparative analysis with deep learning models, as they provide 

a benchmark to evaluate whether the added complexity of deep learning yields 

significant improvements over the statistical ARIMA baseline. 

 

3.2.2.7 Result Visualization and Exports 

 

To aid users in understanding and interpreting the ARIMA model’s prediction 

outcomes, several visualization techniques are implemented.  
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First, time-series forecast plots are generated for each stock, illustrating the trend 

comparison between actual and predicted prices over the test period. These plots display 

the actual closing prices alongside the forecasted values using a dashed line, allowing 

users to visually assess the model’s ability to capture price trends and fluctuations over 

time.  

 

Second, scatter plots are created to depict the correlation between predicted and actual 

prices, with ideal results aligning along a diagonal line. These plots highlight the 

model’s predictive accuracy and any biases, providing a clear visual representation of 

forecasting performance. 

 

Additionally, the bar charts for all model’s metrics are produced to horizontally 

compare the model’s performance across the three evaluation metrics for all 10 Nasdaq 

stocks. These bar charts facilitate a straightforward comparison of forecasting accuracy 

across the dataset. 
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3.2.3 Numerical Stock Price Prediction Using Deep Learning Models 

 
This section outlines the development of deep learning models for numerical stock price 

prediction, detailing the approach, model selection, and implementation process across data 

preparation, training, evaluation, and visualization. 

 

3.2.3.1 Overview of the Approach 

 
Numerical stock price forecasting using machine learning models, such as predicting a 

stock’s price three days ahead, is framed as a regression task, unlike trend prediction 

which focuses on market directions. The model processes inputs like historical prices, 

technical indicators, financial news, and sentiment scores, outputting a precise 

numerical value for the future price. This method provides quantifiable outputs ideal 

for short-term trading strategies, offering clear price targets for decision-making. 

However, it is more susceptible to market noise and struggles with sudden events like 

black swan incidents, as these introduce volatility that is challenging to model 

accurately. Despite these hurdles, the approach’s ability to deliver concrete predictions 

makes it valuable for investors seeking detailed insights into future stock prices. 

 

3.2.3.2 Model Selection 

This study evaluates six deep learning models to assess their effectiveness in stock price 

forecasting, ranging from simple temporal models to complex hybrid architectures with 

sentiment integration. The models’ theoretical foundations, structures, benefits, and 

drawbacks are analyzed below: 

 

1. GRU (Gated Recurrent Unit) 

• Background: A simplified LSTM variant, GRU reduces complexity by 

omitting gates like the output gate, enhancing efficiency. 

• Architecture: Features update and reset gates to manage information flow, 

focusing on relevant sequence patterns. 

• Advantages: GRUs offer high computational efficiency due to fewer 

parameters, making them ideal for rapid iterations or resource-constrained 

environments. 
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• Limitations: GRUs are less expressive than LSTMs, struggling with very long-

term dependencies due to their simplified structure. GRUs are also less effective 

at handling complex feature interactions, particularly when integrating 

multimodal data like sentiment scores, limiting their applicability in volatile 

markets. 

 

2. LSTM (Long Short-Term Memory Network) 

• Background: An RNN architecture addressing vanishing gradients, designed 

for long-term sequential dependencies. 

• Architecture: LSTMs feature forget, input, and output gates. The forget gate 

discards irrelevant information, the input gate updates the cell state with new 

data, and the output gate generates predictions. 

• Advantages: LSTMs excel at capturing long-term dependencies in stock price 

data, such as seasonal trends, ensuring stable training for 15-day medium-term 

forecasts. LSTMs are robust for sequential data with strong temporal patterns. 

• Limitations: The high parameter count increases training time and 

computational demand. LSTMs are also sensitive to noise in financial data and 

struggle to incorporate multimodal features like textual sentiment without 

architectural extensions, limiting their adaptability in complex scenarios. 

 

3. CNN (Convolutional Neural Network) 

• Background: Adapted from image processing, CNNs excel in 1-D time series 

for local pattern detection. 

• Architecture: Employs 1-D convolution kernels, followed by flattening and 

dense layers for prediction. 

• Advantages: CNNs are computationally efficient with fast training times due 

to the simple structure. CNNs effectively capture short-term price volatility, 

such as daily fluctuations, making them suitable for 7-day forecasts in less 

complex markets. 

• Limitations: CNNs lack mechanisms for long-term memory, restricting their 

ability to model extended trends or dependencies. 

 

4. LSTM-BERT (Sentiment-Augmented LSTM) 
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• Background: This hybrid model, inspired by recent advancements in NLP, 

integrates BERT-derived sentiment scores with LSTM, aiming to capture 

market emotions alongside price data. 

• Architecture: Sentiment scores are extracted using BERT from financial news 

and concatenated with price features as input. 

• Advantages: The model enhances sensitivity to market mood swings, 

improving predictions in sentiment-driven scenarios, such as volatile tech 

stocks. 

• Limitations: Sentiment scores may introduce noise, especially with sparse or 

inaccurate news data. BERT’s computational intensity increases training time, 

and the model may overfit if sentiment features dominate without sufficient 

price data, reducing reliability in stable markets. 

 

5. CNN-LSTM (Hybrid Convolutional and Recurrent Network) 

• Background: CNN-LSTM combines CNN’s local pattern extraction with 

LSTM’s sequential modeling. 

• Architecture: A CNN layer extracts short-term features, followed by a LSTM 

layer for temporal dependency modeling, and a dense layer for regression output.  

• Advantages: This hybrid approach leverages CNN’s efficiency in detecting 

short-term trends and LSTM’s strength in sequential modeling, performing well 

for stocks with periodic behaviors. It is more robust to noise than standalone 

models. 

• Limitations: The combined architecture increases complexity, leading to 

longer training times. It requires extensive hyperparameter tuning, and the 

performance can degrade if short-term patterns dominate over long-term trends. 

 

6. CNN-LSTM-BERT (Multichannel Sentiment-Enhanced Model) 

• Background: A multimodal approach for time series modelling, CNN-LSTM-

BERT integrates sentiment analysis with price data, building on CNN-LSTM 

by adding BERT sentiment scores for enhanced forecasting. 

• Architecture: CNN is used to capture local price patterns, LSTM models 

temporal sequences, and BERT-derived sentiment scores form an additional 

input channel, fused via concatenation before a dense output layer for regression. 



 
   
 

32 

 

• Advantages: It effectively models price dynamics and sentiment shifts. The 

multimodal input enhances predictive accuracy. 

• Limitations: The model’s complexity demands significant computational 

resources, considerably increasing training time and memory usage. The model 

also risks overfitting if the sentiment effect is low, and the potential redundant 

features from BERT may reduce efficiency, requiring careful feature selection 

and model parameters tuning. 

 

The six models span a range from simple temporal architectures to advanced 

multimodal frameworks, enabling a thorough assessment of diverse modeling strategies. 

By systematically analyzing their real-world performance in stock price prediction, the 

study identifies the models that effectively balance accuracy, computational efficiency, 

and practical utility. These findings provide critical insights for refining future 

forecasting systems, guiding the selection of architectures that optimize predictive 

power while maintaining usability. 

 

3.2.3.3 Data Reading and Preparation 

 
The implementation begins by loading financial news datasets for selected stocks across 

forecast windows (7-day, 15-day), followed by basic preprocessing to ensure data 

quality. News data, comprising titles and summaries, forms the raw text for sentiment 

analysis. To improve readability and analyze word frequencies, jieba performs Chinese 

word segmentation, while WordCloud generates visualizations. Stock price data, 

including daily open, close, high, low, and volume, is retrieved using 

pandas_datareader from the Stooq API. Timestamps from the news data are aligned 

with stock prices by date, ensuring consistency for multimodal models. 

 

3.2.3.4 Feature Engineering and Normalization 

  
Feature engineering leverages daily stock prices to form the core inputs for prediction. 

For models incorporating sentiment, a bert_sentiment score is added, extracted via 

HuggingFace’s distilbert-base-uncased-finetuned-sst-2-english model, fine-tuned on 

the Stanford Sentiment Treebank v2 (SST-2) dataset for English sentiment 
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classification. Each news item yields a sentiment score (positive or negative), 

enhancing the model’s ability to capture market emotions. Features and target values 

are normalized using MinMaxScaler to scale them within [0, 1], ensuring uniform 

contribution during training. A 14-day sliding window generates sequential training 

samples, where each input sequence comprises 14 days of features, and the target is the 

closing price on the 15th day. 

 

3.2.3.5 Model Architecture 

 
The six deep learning models are constructed using TensorFlow’s Sequential API. The 

LSTM model features a single LSTM layer and a dense layer to model long-term 

dependencies. The GRU model, with a similar setup, uses fewer parameters for faster 

computation. The CNN model applies convolutional filters to detect local price patterns, 

followed by a dense output layer. The CNN-LSTM hybrid uses CNN layers for short-

term feature extraction, feeding into an LSTM for sequence modelling. The LSTM-

BERT model enhances LSTM with a sentiment score input channel, while CNN-

LSTM-BERT integrates all three models for comprehensive modelling. Each model 

incorporates a dropout layer to mitigate overfitting, concluding with a dense output 

layer for regression, ensuring accurate price predictions across diverse architectures. 

 

3.2.3.6 Training Process and Parameter Settings 

 
The deep learning models are trained using Mean Squared Error (MSE) as the loss 

function, optimized with the Adam optimizer for efficient gradient descent. Training 

incorporates two callbacks:  

• EarlyStopping: It halts training if validation loss (val_loss) does not improve 

after 30 epochs, preventing overfitting. 

• ReduceLROnPlateau: It lowers the learning rate upon validation loss plateaus, 

enhancing convergence.  

Models are trained for varying epochs, specifically 15 for simpler models like LSTM 

and up to 200 for complex models like CNN-LSTM-BERT, to balance performance 

and efficiency.  
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Data is split into training and testing sets with ratios such as 80:20 or 55:45, depending 

on the model’s complexity and data needs. Random seeds (set_seed) are fixed to ensure 

reproducibility across experiments, allowing consistent evaluation of model 

performance. 

 

3.2.3.7 Prediction and Evaluation Metrics 

 
Predictions are generated by applying the trained deep learning models to the test set, 

producing numerical stock price forecasts for specified horizons (7-day, 15-day). 

Model performance is evaluated using four regression metrics:  

• 𝑹𝟐  (Coefficient of Determination): 𝑅2  assesses variance explanation, with 

values closer to 1 indicating better fit. 

• RMSE (Root Mean Squared Error): RMSE measures average prediction 

error magnitude, emphasizing larger errors 

• MAE (Mean Absolute Error): MAE provides a linear error measure for 

overall stability. 

• MAPE (Mean Absolute Percentage Error): MAPE expresses errors as 

percentages, enabling cross-stock comparisons.  

These metrics are computed for each model and stock, stored in a Pandas DataFrame, 

and exported to designated files for subsequent comparative analysis with statistical 

baselines. 

 

3.2.3.8 Result Visualization and Export 

 
The system generates visualizations to help users interpret the deep learning models’ 

prediction outcomes. The generated visualizations are as follows: 

• Time-Series Forecast Plots: They display actual versus predicted prices, 

illustrating trend alignment over the forecast period.  

• Scatter Plots : They visualize the correlation between actual and predicted 

prices, with points near the diagonal indicating high accuracy.  

• Model Metric Bar Charts: They compare performance across R², RMSE, 

MAE, and MAPE for all models, using Matplotlib and Seaborn to create 

horizontal bar charts with metric values labeled for clarity.   
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3.3 Personalized Investment Recommendation System 

  
This section outlines the methodology for developing a personalized investment 

recommendation system, which leverages the predictive models to provide tailored trading 

advice to users based on their risk preferences and market sentiment. 

  

3.3.1 Data Input and User Preference Collection 

 
The recommendation system begins by collecting user-specific data to understand 

individual investment preferences. Upon registration, users are prompted to specify 

their risk tolerance level (low, moderate, high) through a dedicated profile setup page 

on the website. 

  

3.3.2 Integration of the NLP Model 

 
The system integrates the trained LSTM and deep learning models to generate 

predictions that inform the recommendation logic. The LSTM model provides daily 

binary classifications (UP/DOWN) for stock price movements, while the deep learning 

model outputs precise numerical price forecasts. A backend function processes news 

data daily, fetched via the yfinance API to compute sentiment scores that enhance the 

deep learning model’s forecasting accuracy. This dual-model approach ensures that 

recommendations are informed by both directional trends and sentiment-driven price 

expectations. 
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3.3.3 Personalized Recommendation Algorithm 

 
The recommendation algorithm combines model predictions with user risk profiles to 

generate tailored trading advice. For unregistered users, a general rule is applied: if the 

expected return exceeds 1.5%, the recommendation is "BUY"; if it falls below −1.5%, 

it is "SELL"; otherwise, it is "HOLD". For registered users, the system adjusts these 

thresholds based on risk preference: 

 

• Risk-Averse Users: Recommend "BUY" only if the expected return is greater 

than 5% or the LSTM-predicted UP direction probability exceeds 0.8. 

 

• Risk-Neutral Users: Recommend "BUY" if the return exceeds 3% or the UP 

probability is above 0.6. 

 

• Risk-Seeking Users: Recommend "BUY" if the return exceeds 1% or the UP 

probability is above 0.5. 

 

3.3.4 Recommendation Result Display and User Interaction 

 
The recommendations are presented through an intuitive interface on the stock detail 

page, where users can view the predicted price, direction, and the sentiment score. Users 

can interact with the system by accepting or rejecting recommendations, and their 

actions are logged in the table, allowing the system to refine future suggestions based 

on user feedback. This iterative process ensures that the recommendation system adapts 

to individual user needs. 
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3.4 Paper Trading System 

 

We will create a paper trading system to improve user experience by incorporating a 

personalized investment recommendation feature. This will enable users to test investment 

advice and various trading strategies in a simulated environment. The system will provide 

virtual funds for executing simulated buy/sell transactions based on recommendations from 

our developed models and real-time stock market data. All transaction information will be 

stored in a SQLite database, ensuring that decisions are based on current market conditions. 

A trading engine will update users' positions and account balances according to their stock 

portfolios. Furthermore, users will be able to evaluate the effectiveness of 

recommendations through trade analysis and modify their actual trading strategies based 

on risk and return rates. 
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3.5 Front-end and Back-end Construction 

 
This section discusses the development of the website’s frontend and backend components, 

focusing on how they support the stock price prediction system and user interactions. 

 

3.5.1 Frontend Development 

 

The frontend is built using HTML, CSS, and JavaScript within the Django framework, 

ensuring a responsive and user-friendly interface. Key pages include the homepage, stock 

list, stock detail, news, model introduction, and paper trading dashboard. Django templates 

dynamically populate data, such as the NASDAQ-100 stock list on the stocks page, where 

users can sort by market capitalization or filter by price movement. User authentication 

pages (register, login, logout) are implemented to secure access to personalized features 

like paper trading. 

 

3.5.2 Backend Development 

 

The backend is developed using Django, managing data processing, API interactions, and 

model deployment. The SQLite database, structured with tables like NasdaqTicker, 

DailyQuote, and PredictionResult, stores stock data, news, and predictions. Django handles 

API requests to fetch real-time data via yfinance, scheduling updates with Django-crontab 

for news. The backend loads the trained machine learning models and scalers to generate 

daily predictions. It also processes user requests, such as paper trading transactions, 

updating the TradingAccount and Position tables accordingly. 
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4 Results and Discussion 

This chapter presents the results and analysis of the financial management platform developed 

for stock price prediction and personalized investing. The project encompasses three predictive 

models, which are LSTM for stock price movement direction, ARIMA as a baseline for 

numerical price prediction, and deep learning models for the final numerical forecasting, along 

with a fully functional website integrating these models. The following sections evaluate the 

performance of each component, discuss their implications, and highlight the practical utility 

of the integrated platform for investors. 

 

4.1 Stock Price Movement Prediction Model Using LSTM 

 

This section evaluates the performance of the Long Short-Term Memory (LSTM) model 

developed for predicting stock price movements of the top 10 Nasdaq stocks by portfolio 

weight. The model, designed for binary classification (UP or DOWN movements), 

leverages historical stock data from January 1, 2010, to December 31, 2024, sourced via 

the Yahoo! Finance API. Features such as technical indicators (EMA, ADMI, Stochastic 

K%, D%), and market metrics (Nasdaq Index, VIX, Beta) are processed and standardized. 

The model’s predictions on the test set (561 days) are analysed using confusion matrices, 

focusing on accuracy, precision, recall, and F1-score to assess its effectiveness. 

 

4.1.1 Model Performance 

 

The LSTM model was evaluated on the test set for each of the top 10 Nasdaq stocks. 

Performance metrics, including the accuracy, precision, recall, and F1-score, were 

calculated from the confusion matrices. The formulas used are as follows: 

  

• Accuracy: The proportion of correct predictions over total predictions. 

Equation 5. Formula for Calculating the Accuracy Metric 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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• Precision (UP class): The proportion of correct UP predictions out of all 

predicted UPs. 

Equation 6. Formula for Calculating the Precision Metric 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑈𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall (UP class): The proportion of actual UPs correctly predicted. 

Equation 7. Formula for Calculating the Recall Metric 

𝑅𝑒𝑐𝑎𝑙𝑙𝑈𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F1-Score (UP class): The harmonic mean of precision and recall for the UP 

class. 

Equation 8. Formula for Calculating the F1-Score Metric 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑈𝑃 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑈𝑃 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑈𝑃
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑈𝑃 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑈𝑃

 

   

where 𝑇𝑃 is the true positives, 𝑇𝑁 is the true negatives, 𝐹𝑃 is the false positives, 𝐹𝑁 is 

the false negatives.  

 

The confusion matrices for all ten stocks are presented as follows (Figure 1-10): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for AAPL 

Figure 2. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for MSFT 
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Figure 3. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for NVDA 

Figure 4. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for AMZN 

Figure 5. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for AVGO 

Figure 6. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for META 

Figure 7. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for COST 

Figure 8. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for NFLX 
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The Table 2 below summarizes the performance metrics for each stock: 

 

Table 2. Summarization Table of All Performance Metrics for Each Stock 

Stock Accuracy Precision (UP) Recall (UP) F1-Score (UP) 

AAPL 0.615 0.627 0.757 0.686 

MSFT 0.615 0.622 0.806 0.702 

NVDA 0.617 0.646 0.697 0.671 

AMZN 0.608 0.621 0.699 0.658 

AVGO 0.606 0.676 0.533 0.596 

META 0.519 0.618 0.502 0.554 

COST 0.611 0.640 0.747 0.689 

NFLX 0.615 0.638 0.720 0.676 

GOOGL 0.608 0.635 0.727 0.678 

TSLA 0.584 0.555 0.776 0.647 

 

 
4.1.2 Performance Analysis 

 

The performance of the LSTM-based stock price direction forecasting model across the 

top 10 Nasdaq stocks reveals both strengths and limitations, providing valuable insights 

into its practical utility for investors. The analysis focuses on the metrics presented in 

the Table 2 above, examining the model’s ability to predict UP and DOWN movements, 

its consistency across stocks, and potential areas for improvement. 

 

4.1.2.1 Overall Performance 

 

Figure 9. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for GOOGL 

Figure 10. Confusion Matrix for the Stock Price 
Movement Prediction Using LSTM for TSLA 
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The model’s accuracy across the 10 stocks ranges from 0.519 (META) to 0.617 

(NVDA), with an average accuracy of approximately 0.6. This indicates that the model 

correctly predicts the direction of stock price movements in about 60% of the cases on 

average, which is a considerable improvement over the model presented in the last 

interim report, which was about 54% in accuracy on average. The test set, comprising 

around 566 trading days for each stock, provides a robust sample to evaluate the 

model’s generalization to unseen data. However, the relatively low accuracy for some 

stocks, particularly META, suggests that the model struggles with certain stocks, likely 

due to differences in price movement patterns or market dynamics. 

 

The precision for the UP class varies from 0.555 (TSLA) to 0.676 (AVGO), with an 

average of 0.628. This metric indicates the reliability of the model’s UP predictions, 

which on average 62.8% of the predicted UP movements were correct. Recall for the 

UP class ranges from 0.502 (META) to 0.806 (MSFT), averaging 0.696, meaning the 

model identifies about 69.6% of actual UP movements. The F1-score, balancing 

precision and recall, ranges from 0.554 (META) to 0.702 (MSFT), with an average of 

0.656, reflecting a reasonable trade-off between the two metrics. 

 

4.1.2.2 Class Imbalance and Prediction Bias 

 

One notable trend across the confusion matrices is the model’s tendency to favor 

predicting UP movements. For instance, in MSFT, the model predicts 408 UP 

movements (154 FP + 254 TP) compared to only 153 DOWN movements (92 TN + 61 

FN). This bias is evident in the high recall for the UP class. The class weights applied 

during training, as implemented in the code, aim to address potential imbalances in the 

training data. However, the test set appears to have a slight skew toward UP movements 

in some stocks, which may contribute to this bias. 
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4.1.2.3 Stock Specific Performance 

 

The model’s performance varies across the 10 stocks, reflecting differences in their 

price dynamics. MSFT demonstrates the high accuracy (0.615) and F1-score (0.702), 

which was driven by its high recall (0.806). The confusion matrix shows 254 true 

positives out of 315 actual UP movements, indicating strong sensitivity to upward 

trends. However, its precision (0.622) is lower due to 154 false positives, suggesting 

that the model incorrectly predicts UP movements in many DOWN cases. This stock 

likely exhibits strong and predictable upward trends that the LSTM captures well, 

possibly due to consistent market momentum. 

 

In contrast, META has the lowest accuracy (0.516) and F1-score (0.554), with a recall 

of only 0.502. The confusion matrix reveals a balanced prediction pattern, but the model 

struggles to correctly identify both UP and DOWN movements. This stock may have 

more erratic price movements or weaker trends, making it challenging for the LSTM to 

capture temporal dependencies effectively. The Heikin-Ashi transformation, intended 

to smooth volatility, may not fully mitigate noise in this stock’s data, leading to poor 

performance. 

 

AVGO is performs the best in terms of precision (0.676), but its recall (0.533) is the 

second-lowest. The confusion matrix shows only 78 false positives, indicating that the 

model is conservative in predicting UP movements, but it misses many actual UP 

instances (143 FN). This suggests that AVGO may have a higher proportion of DOWN 

movements or more complex patterns that the model fails to capture, leading to a 

cautious prediction strategy. 

 

4.1.2.4 Impact of Features and Preprocessing 

 

The model’s performance is influenced by the feature engineering and preprocessing 

steps outlined in the methodology. The use of Heikin-Ashi candlesticks smooths price 

data, reducing noise and enhancing trend detection. This is particularly effective for 

stocks with clear trends, such as MSFT, where the high recall suggests that the model 

successfully identifies smoothed upward patterns. The inclusion of technical indicators 
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like EMA, ADMI, and Stochastic K% and D% provides the LSTM with insights into 

trends and momentum, which likely contribute to the model’s ability to detect UP 

movements. 

 

Market-related features, such as the Nasdaq Index, VIX, and rolling Beta, add context 

about broader market dynamics. The rolling Beta measures a stock’s sensitivity to 

market movements. Stocks with higher Beta values, which are more correlated with the 

market, may benefit from the Nasdaq Index feature. 

 

Feature standardization, using StandardScaler for most features and MinMaxScaler for 

the adjusted closing price, ensures that all inputs contribute proportionally to the 

model’s learning process. This step likely improves the model’s stability, as evidenced 

by the consistent performance across most stocks, but it may not fully address the 

impact of outliers or extreme volatility in certain stocks like META. 

 

4.1.2.5 Model Architecture and Training 

 

The LSTM architecture, with two stacked LSTM layers, a dense layer, and a sigmoid 

output, is well-suited for capturing temporal dependencies in stock price data. The use 

of dropout and early stopping helps mitigate overfitting, as seen in the reasonable 

generalization to the test set. The Grid Search over hidden units ensures that the model 

is optimized for each stock, which contributes to the relatively stable performance 

across stocks. 

 

However, the model’s bias toward UP predictions may stem from the training process. 

The binary cross-entropy loss may not fully address the class imbalance if the training 

data has a significant skew. The class weights help, but their impact appears limited, as 

the model still overpredicts UP movements.  

 

4.1.2.6 Limitations and Future Improvements 

 

The model’s average accuracy of 0.6 indicates room for improvement, especially for 

stocks like META. One limitation is the potential mismatch between the training and 
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test periods. The training data (2010–2020) may include long-term bull markets, 

leading the model to overfit to UP patterns, while the test period (2023–2024) may 

include more volatile or bearish conditions. 

 

Another limitation is the feature set. While the selected features capture trends, 

momentum, and market dynamics, they may not fully account for external factors like 

macroeconomic events or company-specific news, which can significantly impact stock 

prices. 

 

Future improvements could include: 

 

• Additional Features: Include macroeconomic indicators (e.g. interest rates) or 

alternative data to capture more drivers of price movements. 

 

• Hyperparameter Tuning: Expand the Grid Search to include other parameters, 

such as dropout rate or learning rate, to further optimize the model. 

 

4.1.2.7 Practical Implications 

 

For novice investors, the model provides a useful starting point, particularly for stocks 

with predictable trends. The high recall for UP movements means that the model can 

reliably identify upward trends, helping investors capitalize on potential gains. 

However, the lower precision and tendency to overpredict UP movements suggest that 

investors should use the model’s predictions cautiously to avoid false positives that 

could lead to poor investment decisions. 

 

In conclusion, the LSTM model demonstrates moderate success in predicting stock 

price directions, with strengths in identifying UP movements but challenges in 

balancing precision and recall. Its performance varies across stocks, highlighting the 

importance of stock-specific dynamics in financial forecasting. Future enhancements 

to the feature set and training process could further improve its reliability, making it a 

more robust tool for novice investors navigating the volatile stock market. 
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4.2 Baseline Numerical Stock Price Prediction Model Using 

ARIMA 

 

This section presents the results and analysis of the ARIMA model for numerical stock 

price prediction of the top 10 Nasdaq stocks by portfolio weight. The model forecasts daily 

closing prices, serving as a statistical baseline for comparison with deep learning 

approaches. The methodology includes stationarity testing, model training, and evaluation 

using RMSE, MAE, and MAPE metrics. 

 

4.2.1 Overview of ARIMA Model Results 

 

This section evaluates the performance of the ARIMA(7,1,0) and ARIMA(15,1,0) 

models for numerical stock price prediction of the top 10 Nasdaq stocks by portfolio 

weight. The models forecast daily closing prices using historical data from January 1, 

2020, to April 17, 2025, sourced via the Yahoo! Finance API. The dataset, spanning 

1,330 trading days, is split into 70% training (931 days) and 30% testing (399 days). 

The models use closing prices as the sole feature, with stationarity ensured through 

first-order differencing. Performance is assessed using RMSE, MAE, and MAPE, with 

results visualized through time-series plots, scatter plots, and bar charts. 

 

4.2.2 Model Performance 

 

The ARIMA(7,1,0) and ARIMA(15,1,0) models were applied to each of the top 10 

Nasdaq stocks, and their performance was evaluated on the test set using three metrics: 

  

• Root Mean Squared Error (RMSE): Measures the square root of the average 

squared differences between predicted and actual prices. 

Equation 9. Formula for Calculating the RMSE Metric 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖̂ − 𝑦𝑖)2

𝑛

𝑛

𝑖=1
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• Mean Absolute Error (MAE): Calculates the average absolute differences 

between predicted and actual prices. 

Equation 10. Formula for Calculating the MAE Metric 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|

𝑛

𝑖=1

 

• Mean Absolute Percentage Error (MAPE): Expresses the average absolute 

error as a percentage of the actual values. 

Equation 11. Formula for Calculating the MAPE Metric 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑖̂ − 𝑦𝑖
𝑦𝑖

|

𝑛

𝑖=1

× 100 

   

where 𝑦𝑖 is the actual price, 𝑦𝑖̂ is the predicted price. 

 

The performance metrics for both models are summarized in the figures below (Figure 

11-12). 

 

ARIMA(7,1,0) Performance 

 

 

 

ARIMA(15,1,0) Performance 

Figure 11. The ARIMA(7, 1, 0) Model Results  with RMSE, MAPE, and MAE 
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4.2.3 Performance Analysis 

 

The ARIMA(7,1,0) and ARIMA(15,1,0) models provide a statistical baseline for 

numerical stock price prediction. This analysis examines the models’ accuracy, the 

impact of stationarity preprocessing, the effect of different look-back periods, and their 

practical utility as baselines for comparison with deep learning models. 

 

4.2.3.1 Stationarity and Preprocessing 

 

Ensuring stationarity is a critical step in ARIMA modelling, as the model assumes a 

constant mean, variance, and autocorrelation structure. The Augmented Dickey-Fuller 

(ADF) test was applied to the closing price time series before and after first-order 

differencing, which is visualized below in the Figure 13-14. The p-values for the 

original series range from 0.1907 (TSLA) to 0.9554 (AVGO), all above the 0.05 

threshold, indicating non-stationarity. This confirms that the raw stock price data 

exhibits trends, which could distort ARIMA’s ability to capture patterns. 

Figure 12. The ARIMA(15, 1, 0) Model Results  with RMSE, MAPE, and MAE 
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After the first-order differencing, the p-values drop to 0.0 for all stocks, well below 

0.05, rejecting the null hypothesis and confirming stationarity. This transformation, set 

as (𝑑 = 1) in both ARIMA configurations, removes trends and stabilizes the mean, 

aligning with ARIMA’s assumptions. 

 

4.2.3.2 Overall Performance Comparison 

 

ARIMA(7,1,0) Model 

 

The ARIMA(7,1,0) model’s MAPE ranges from 0.9693% (COST) to 2.8707% (TSLA), 

averaging 1.53%. This indicates that, on average, the model’s predictions deviate by 

about 1.53% from the actual prices, which is a reasonable error for stock price 

forecasting given the market’s volatility. RMSE values range from 3.0679 (GOOGL) 

to 15.0086 (NFLX), averaging 7.41. MAE, ranging from 2.1754 (GOOGL) to 9.9032 

(NFLX) with an average of 5.05. 

 

ARIMA(15,1,0) Model 

 

The ARIMA(15,1,0) model’s MAPE ranges from 0.9743% (COST) to 2.8996% 

(TSLA), averaging 1.69%, slightly higher than the ARIMA(7,1,0) model. RMSE values 

range from 3.0679 (GOOGL) to 15.1931 (NFLX), averaging 7.45, also slightly higher 

Figure 13. The p-value of the Training Time Series Before and After First-Order Differencing Under the ADF Test 
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than the 7-day model. MAE ranges from 2.1742 (GOOGL) to 10.0493 (NFLX), 

averaging 5.11, indicating a minor increase in compared to ARIMA(7,1,0). 

 

Comparative Analysis 

 

The ARIMA(7,1,0) model generally outperforms the ARIMA(15,1,0) model across 

most stocks, with lower average MAPE (1.53% vs. 1.69%), RMSE (7.41 vs. 7.45), and 

MAE (5.05 vs. 5.11). This suggests that a shorter look-back period of 7 days is more 

effective for capturing short-term price patterns in this dataset. The ARIMA(15,1,0) 

model’s slightly higher errors may result from overfitting to longer-term patterns that 

are less relevant for daily forecasts. 

 

4.2.3.3 Model Limitation 

 

Both ARIMA models rely solely on historical closing prices, lacking external features 

like market sentiment or macroeconomic indicators, which limits their ability to adapt 

to sudden market shifts. The rolling forecast approach, without refitting at each step, 

may cause the model to drift from optimal parameters over time, particularly during 

volatile periods. 

 

The test period includes market fluctuations that challenge the models’ assumptions of 

stationarity. For example, the stocks with high MAPE may reflect its rapid growth, 

which ARIMA struggles to model due to its linear nature. 

 

4.2.3.4 Practical Implications and Comparison 

 

As baselines, the ARIMA models provide simple and interpretable benchmarks for 

stock price prediction. The ARIMA(7,1,0) model’s average MAPE of 1.53% suggests 

better accuracy than the ARIMA(15,1,0) model (1.69%), making it more suitable for 

short-term forecasting. However, both models’ performance lags behind more complex 

models in capturing nonlinear patterns and external influences, as evidenced by their 

struggles with volatile stocks like TSLA. 
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For practical use, the ARIMA(7,1,0) model is best suited for stocks with stable trends, 

where its predictions can guide short-term investment decisions. However, for volatile 

stocks or during market turbulence, its predictions should be supplemented with more 

advanced models. 

 

4.2.3.5 Future Improvements 

 

To further enhance the ARIMA models’ performance, the following can be considered 

in the future: 

 

• Dynamic Parameter Tuning: Use auto-ARIMA to dynamically select the 

hyper-parameters for each stock which can potentially improve the model 

performance. 

 

• Hybrid Models: Combine ARIMA with machine learning models to leverage 

both statistical and nonlinear modelling capabilities. 

 

In conclusion, the ARIMA(7,1,0) model serves as an effective baseline, outperforming 

the ARIMA(15,1,0) model in most cases and achieving reasonable accuracy for 

numerical stock price prediction. However, it highlights the need for more sophisticated 

models in volatile markets, providing a foundation for evaluating deep learning 

approaches in subsequent analyses. 
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4.3 Numerical Stock Price Prediction Using Deep Learning 

Models 

 
This section evaluates the performance of six deep learning models, which are GRU, LSTM, 

CNN, LSTM-BERT, CNN-LSTM, and CNN-LSTM-BERT, for numerical stock price 

prediction of the top 10 Nasdaq stocks over 7-day and 15-day forecast horizons. The models 

incorporate historical prices and BERT-derived sentiment scores. Performance is assessed 

using R², RMSE, MAE, and MAPE, and compared against the ARIMA baseline models.  

 

4.3.1 Model Performance 

 

The six deep learning models were evaluated on the test set for both 7-day and 15-day 

forecast horizons, with average performance metrics computed across the 10 Nasdaq 

stocks. The metrics used are: 

  

• Root Mean Squared Error (RMSE): Measures the square root of the average 

squared differences between predicted and actual prices (Equation 9). 

 

• Mean Absolute Error (MAE): Calculates the average absolute differences 

between predicted and actual prices (Equation 10). 

 

• Mean Absolute Percentage Error (MAPE): Expresses the average absolute 

error as a percentage of the actual values (Equation 11). 

 

The results of six models over 7-day and 15-day horizons are presented below 

respectively (Table 3-4): 

  

 7-Day Forecast Horizon 

Table 3. Summarization Table of the Results of Six Deep Learning Over the 7-Day Forecast Horizon 

 𝑅2 RMSE MAPE MAE 

GRU 0.8566 5.6708 5.7861 6.2554 
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LSTM 0.7044 8.9912 8.2992 9.2819 

CNN 0.2243 24.0836 11.0298 18.9425 

LSTM-BERT 0.9378 4.0892 2.4456 2.4569 

CNN-LSTM 0.8138 7.9822 6.7982 7.2444 

CNN-LSTM-BERT 0.9243 4.6208 3.2087 3.5029 

 

15-Day Forecast Horizon 

 

Table 3. Summarization Table of the Results of Six Deep Learning Over the 15-Day Forecast Horizon 

 𝑅2 RMSE MAPE MAE 

GRU 0.8140 10.4684 6.9489 13.0404 

LSTM 0.6816 15.5968 10.4643 19.6708 

CNN 0.0849 34.9023 25.0678 40.0567 

LSTM-BERT 0.9106 6.0894 3.4436 6.0223 

CNN-LSTM 0.8138 11.0895 7.8900 13.7285 

CNN-LSTM-BERT 0.9127 6.2294 3.8825 7.0415 

 

4.3.2 Performance Analysis and Comparison with ARIMA 

 

The six deep learning models demonstrate varying levels of effectiveness in numerical 

stock price prediction, with improvements over the ARIMA baseline models in some 

cases. The analysis compares their performance against ARIMA(7,1,0) and 

ARIMA(15,1,0), focusing on the 7-day and 15-day forecast horizons, and justifies the 

selection of the LSTM-BERT model for final prediction. 

 

4.3.2.1 Deep Learning Models Performance 

 

7-Day Forecast Horizon 

 

For the 7-day horizon, LSTM-BERT achieves the highest performance with an 𝑅2 of 

0.9378, RMSE of 4.0892, MAPE of 2.4456%, and MAE of 2.4569, indicating excellent 
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predictive accuracy and the best fit among all models. CNN-LSTM-BERT follows 

closely, benefiting from its multimodal architecture that integrates sentiment and price 

data. GRU (R² 0.8566, MAPE 5.7861%) and CNN-LSTM (R² 0.8138, MAPE 

6.7982%) perform moderately well. The standalone LSTM model performs less well 

(R² 0.7044, MAPE 8.2992%), due to its inability to incorporate sentiment, while CNN 

performs the worst (R² 0.2243, MAPE 11.0298%). 

 

15-Day Forecast Horizon 

 

For the 15-day horizon, LSTM-BERT again leads with an R² of 0.9106, RMSE of 

6.0894, MAPE of 3.4436%, and MAE of 6.0223, maintaining strong performance 

despite the longer forecast window. CNN-LSTM-BERT remains competitive (R² 

0.9127, MAPE 3.8825%), while GRU and CNN-LSTM show moderate degradation in 

accuracy due to increased forecast complexity. The standalone LSTM and CNN 

perform poorly with high relative error. 

 

4.3.2.2 Comparison with ARIMA Baseline 

 

7-Day Forecast Comparison 

 

The ARIMA(7,1,0) model, as reported in Section 4.2, achieves an average MAPE of 

1.53%, RMSE of 7.41, and MAE of 5.05 across the 10 stocks. In contrast, the best deep 

learning model, LSTM-BERT, has a MAPE of 2.4456%, which is 60% higher than 

ARIMA’s, despite a better RMSE (4.0892) and MAE (2.4569). While deep learning 

models like LSTM-BERT excel in MAE and RMSE, their higher MAPE indicates that 

ARIMA is more accurate in relative terms. 

 

15-Day Forecast Comparison 

 

For the 15-day horizon, the ARIMA(15,1,0) model has an average MAPE of 1.69%, 

RMSE of 7.45, and MAE of 5.11. The best deep learning model, LSTM-BERT, reports 

a MAPE of 3.4436%, nearly double ARIMA’s, despite a lower RMSE (6.0894) and 

comparable MAE (6.0223). 
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4.3.2.3 Model Selection Rationale 

 

Despite ARIMA’s better MAPE, the LSTM-BERT model was selected for final 

prediction due to its superior 𝑅2 and lower RMSE, and ability to incorporate sentiment 

data, which is critical for capturing market dynamics in volatile stocks. While ARIMA 

excels in MAPE, its lack of multimodal input limits its adaptability to sentiment-driven 

price movements, which is a key advantage of LSTM-BERT. The model’s balanced 

performance across metrics, especially its low RMSE and MAE, makes it a practical 

choice for most financial scenarios. 

 

4.3.2.4 Practical Implications 

 

The deep learning models, particularly LSTM-BERT, offer advantages in capturing 

nonlinear patterns and sentiment-driven movements, as reflected in their high R² and 

lower RMSE. However, their higher MAPE compared to ARIMA suggests that simpler 

statistical models may be more reliable for percentage-based accuracy. For practical 

use, LSTM-BERT can be employed in contexts where sentiment plays a significant role, 

but its predictions should be cross-validated with ARIMA to ensure accuracy. The 

computational complexity of deep learning models also poses scalability challenges 

compared to ARIMA’s efficiency. 

 

In conclusion, while ARIMA outperforms deep learning models in MAPE, the LSTM-

BERT model’s ability to integrate sentiment and achieve lower RMSE justifies its use 

for final prediction. Future work could focus on hybrid approaches combining 

ARIMA’s accuracy with deep learning’s feature richness to further optimize 

forecasting performance. 
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4.4 Website Development 

This section shows the implementation of the stock price prediction system as a web 

application, designed to deliver actionable insights to investors through AI-driven 

forecasting. Built using the Django framework, the platform integrates the previously 

discussed models to provide real-time stock price forecasts, news updates, and personalized 

trading recommendations. The website’s frontend and backend components, along with its 

key functionalities, are discussed below, highlighting how it empowers users to make 

informed financial decisions. 

 

4.4.1 Overview of Website Implementation 

 

The website is developed using Django for both frontend and backend with HTML, 

enhancing the user interface, and SQLite as the database. The platform supports 

multiple user interactions, from browsing stock data to executing paper trades. The 

implementation ensures real-time updates, user authentication, and personalized 

recommendations, making it a comprehensive tool for investors. Images of the 

website’s key pages illustrate its functionality. 

 

4.4.2 Frontend Design and User Interface 

 

The frontend comprises several webpages, each serving a distinct purpose to enhance 

user experience: 

 

• Home Page (/): The landing page introduces the platform’s purpose and 

includes a search bar for ticker symbols, which can be seen in Figure 14. 
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Figure 14. Home Page of Website 

 

• Stock List (/stocks): Displays a list of NASDAQ-100 stocks with daily price 

updates, predictions, and recommendations. Users can sort or filter the stocks, 

which can be seen in Figure 15. 

 
Figure 15. Stock List Page of Website 

• Stock Detail (/stocks/<ticker_symbol>): Provides detailed information for a 

specific stock including a price history graph with predictions, news sentiment 

scores, and paper trading options, which can be seen in Figure 16. 
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Figure 16. Stock Detail Page of Website 

• News (/news): Summarizes news for NASDAQ-100 stocks, with links to view details 

for each ticker, which can be seen in Figure 17. 

 
Figure 17. News Page of Website 

• News Detail (/news/<ticker_symbol>): Shows news articles for a specific stock, 

which can be seen in Figure 18. 
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Figure 18. News Detail Page of Website 

• Model Introduction (/model): Introduces the two primary models used, highlighting 

their key features like real-time processing and sentiment integration, which can be seen 

in Figure 19. 

 
Figure 19. Model Introduction Page of Website 

• User Authentication (/register, /login, /logout): Allows users to register, log in, and 

log out, with authentication required for paper trading. 

 

• Paper Trading Dashboard (/dashboard): Enables users to set risk preferences (low, 

moderate, high), view their account balance, and transaction history, which can be seen 

in Figure 20. 



 
   
 

61 

 

 
Figure 20. Paper Trading Dashboard Page of Website 

 

The frontend design prioritizes usability, with intuitive navigation and visual elements 

like price trend graphs and actionable buttons for paper trading. 

 

4.4.3 Backend Architecture and Database Design 

The backend, powered by Django, manages data processing, model deployment, and 

user interactions. The SQLite database includes eight tables: 

 

• NasdaqTicker: Stores NASDAQ-100 stock details (ticker, company name, sector), 

with ticker as the primary key. 

 

• DailyQuote: Records daily stock data fetched, using ticker and date as the 

composite primary key. 

 

• StockNews: Stores news articles with fields like ticker, title, and summary, linked 

to NasdaqTicker via a foreign key. 

 

• PredictionResult: Holds daily predictions, including sentiment scores, predicted 

prices, and recommendations, with ticker and date as the primary key. 
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• UserProfile, TradingAccount, Position, TradeRecord: Manage user data, 

account balances, stock positions, and trading records, supporting personalized 

features. 

 

The backend ensures data integrity and efficient retrieval. 

 

4.4.4 Key Functionalities 

• Real-Time Updates: Using Django-crontab, the system updates stock prices and 

predictions at 5 AM HKT on weekdays, aligning with the US market close at 4 AM 

HKT, and news updates occur daily at 8 AM and 8 PM. This ensures users receive 

the latest information, critical for timely decision-making in a dynamic market. 

 

• Model Deployment: The trained models are exported as HDF5 files, with scalers 

saved as pickle files, allowing daily predictions without retraining. A stock news 

update function fetches recent news into CSV files, which are processed to generate 

sentiment scores and predictions stored in the PredictionResult table. 

 

• Recommendation System: For unregistered users, the system provides general 

recommendations based on expected returns: buy if > 1.5% , sell if < −1.5%, else 

hold. Registered users receive personalized recommendations based on risk 

preferences. For example, risk-averse users are recommended to buy only if the 

return exceeds 5% or the predicted direction is UP with > 0.8 probability, while 

thresholds for risk-neutral and risk-seeking users are adjusted accordingly (e.g., 3% 

and 0.6 for neutral). 

 

• User Authentication: The login/signup system, built using Django’s User class, 

ensures secure access to paper trading features. Users can set risk preferences, view 

their portfolio, and execute trades. 

 

4.4.5 Practical Implications and Future Enhancements 

The website successfully delivers a user-friendly platform for stock price prediction, 

combining real-time data, AI-driven forecasts, and paper trading capabilities. It 
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empowers investors by providing actionable insights, such as personalized 

recommendations. However, future enhancements could include integrating more data 

sources, optimizing model inference speed, and expanding the paper trading system to 

include real-time market simulations. Overall, the platform demonstrates the practical 

application of the developed machine learning models, bridging the predictive AI 

analytics with investor decision-making. 
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5 Future Work 

This chapter outlines the future enhancements for the AI-driven financial management 

platform, addressing the limitations identified in the results and discussion. The future work 

is structured into several subsections, each focusing on a specific area of improvement to 

enhance the platform’s predictive accuracy, user experience, and scalability. 

 

5.1 Model Tuning and Optimization 

 

The LSTM and LSTM-BERT models, while effective, exhibit biases and limitations in 

handling volatile stocks like META and TSLA. Future work will focus on advanced 

hyperparameter tuning, expanding Grid Search to include learning rates, dropout rates, and 

layer configurations, to reduce prediction biases. Additionally, optimizing the feature set 

by incorporating macroeconomic indicators and alternative data will improve the model 

robustness. This enhancement aims to increase predictive accuracy across diverse market 

conditions. 

 

5.2 Hybrid Model Development 

 

The ARIMA model’s superior MAPE compared to LSTM-BERT highlights the potential 

of statistical methods, while deep learning excels in capturing nonlinear patterns. Future 

work will explore hybrid models combining ARIMA’s statistical strengths with LSTM-

BERT’s sentiment-driven capabilities. Techniques like sequential modelling will be 

investigated to leverage both approaches’ strengths. This hybrid approach aims to achieve 

lower MAPE while retaining high 𝑅2 , providing a more balanced forecasting tool for 

investors. 

 

5.3 Enhanced Sentiment Analysis 

 

The current sentiment analysis, reliant on financial news, misses broader market sentiments 

from sources like social media. Future work will expand sentiment data sources, integrating 

platforms to capture real-time investor sentiment. This enhancement will improve the 
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LSTM-BERT model’s ability to reflect market mood swings, particularly for volatile stocks, 

enhancing the overall performance of numerical predictions. 

 

5.4 Real-Time Market Simulation in Paper Trading 

 

The paper trading system currently uses static daily updates. Future work will integrate 

real-time market simulations by leveraging various APIs to provide live price feeds during 

market hours. This will enable users to practice trading under dynamic conditions, with the 

system updating portfolio values and recommendations in real time. 

 

5.5 User Feedback and Iterative Refinement 

 

The current platform lacks direct user feedback mechanisms to assess its effectiveness for 

novice investors. Future work will implement feedback forms and usage analysis data on 

the website to gather user insights on usability, prediction accuracy, and recommendation 

relevance. 

 

5.6 Final Deployment 

 

Following the above enhancements, the platform will undergo comprehensive testing, 

including the user acceptance tests for the interface. The final deployment will involve 

releasing the website to the public. Documentation, including user guides and model 

explanations, will be provided to ensure accessibility. This step aims to transition the 

platform from a prototype to a widely-used tool, fulfilling the project’s goal of empowering 

financial decision-making for a broader audience. 
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6 Conclusion 

This project successfully developed an AI-driven financial management platform to empower 

novice investors by addressing key challenges in the stock market, such as information 

overload, complexity, and the lack of personalized guidance. The platform integrates three 

predictive models, which are the LSTM for stock price movement direction, ARIMA for 

baseline numerical forecasting, and the LSTM-BERT for final numerical predictions, 

delivering actionable insights for the top 10 Nasdaq stocks. A fully functional Django-based 

website unifies these models, providing real-time stock updates, news, personalized 

recommendations, and a paper trading system, creating a comprehensive tool tailored for retail 

investors with limited experience. 

 

The results highlight the strengths and limitations of each component. The LSTM model 

achieved a moderate accuracy of 60% in directional forecasting, performing well for stocks 

with stable trends but struggling with volatile. The ARIMA(7,1,0) model provided a reliable 

baseline with a MAPE of 1.53%, outperforming deep learning models in relative accuracy, 

while LSTM-BERT excelled in absolute metrics (R² 0.9378, RMSE 4.0892 for 7-day forecasts), 

leveraging sentiment analysis to capture market dynamics. The website enhances user 

engagement by offering intuitive features like stock detail pages. 

 

Despite these achievements, several limitations remain that impact the platform’s effectiveness. 

The models’ reliance on historical data and financial news misses broader market influences, 

such as macroeconomic factors or geopolitical events, which could enhance prediction 

accuracy. Additionally, the deep learning models, particularly LSTM-BERT, face scalability 

challenges due to their computational complexity, which may hinder performance as user 

demand grows. The sentiment analysis is limited by its focus on news data, potentially 

overlooking other sentiment sources like social media that could provide a more 

comprehensive market perspective. 

 

Looking ahead, future work outlined in Section 5 aims to address these gaps through targeted 

improvements. Hybrid model development combining ARIMA and LSTM-BERT, enhanced 

sentiment analysis incorporating social media, and real-time market simulations will strengthen 

the platform’s capabilities. These enhancements, along with user feedback integration and 
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performance optimization, will ensure the platform evolves to meet the needs of most investors. 

Overall, this project demonstrates the practical utility of AI in financial forecasting, providing 

a user-friendly platform that enhances investment strategies and fosters greater engagement 

among retail investors in the stock market, laying a strong foundation for future advancements. 
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