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Abstract 

The increasing integration of Artificial Intelligence (AI) in academic research presents 

exciting opportunities for archaeology, a field burdened by the challenges of processing vast 

amounts of specialized literature. In this project, we explored the development of a 

Generative AI system specifically designed to address the unique needs of archaeological 

research. While current AI models demonstrate strong general language capabilities, they face 

significant limitations in domain-specific interpretation, context window constraints, and 

access to paywalled academic resources.  

 

To overcome these barriers, we implemented a Retrieval-Augmented Generation (RAG) 

pipeline enhanced by fine-tuning techniques and structured document processing. Our system 

employs CERMINE for intelligent PDF-to-XML conversion, LangChain for semantic text 

chunking and embedding, and ChromaDB for efficient vector-based retrieval. This 

architecture enables archaeologists to query complex research questions while maintaining 

accuracy through source-grounded responses. 

 

The resulting tool significantly improves research efficiency by automating the literature 

review process, enabling rapid synthesis of archaeological knowledge, and providing 

context-aware analysis of specialized texts. Beyond its practical applications, this project 

serves as a case study in adapting cutting-edge AI technologies to humanities research, 

demonstrating how customized implementations can bridge the gap between general-purpose 

AI and domain-specific research needs. Our work aims to not only advance archaeological 

methodology but also contribute towards broader discussions about AI's role in transforming 

academic research practices across disciplines. 

 

1 



Acknowledgements 

I would first like to express our gratitude to Dr. Peter Cobb for his guidance in initiating this 

interdisciplinary research direction, and his expertise invaluable throughout this project. 

 

I am also grateful to our supervisor Dr. Dirk Schnieders for his mentorship throughout the 

project’s development. His feedback and thoughtful advice were instrumental in shaping our 

research goals, methodology, and implementation.  

 

I extend my thanks to my teammate, Fan Yian, whose dedicated participation and seamless 

cooperation made this project possible. 

 

 

 

 

 

 

 

 

 

 

 

 

2 



Table of Contents: 

1. Introduction.............................................................................................................................6 

1.1 Project Background........................................................................................................ 6 

1.2 Current Situation and Limitations.................................................................................. 7 

1.3 Project Objective............................................................................................................ 9 

2. Methodology.........................................................................................................................10 

2.1 Overview.......................................................................................................................10 

2.2 System Architecture......................................................................................................10 

2.2.1 Document Conversion & Structuring.................................................................. 11 

2.2.2 Text Processing & Embedding.............................................................................11 

2.2.3 Retrieval-Augmented Generation........................................................................12 

2.2.4 Response Generation & User Interface............................................................... 13 

2.3 Retrieval-Augmented Generation (RAG) Framework................................................. 13 

2.4 Document Processing & Embedding............................................................................16 

2.4.1 Conversion...........................................................................................................16 

2.4.2 Splitting................................................................................................................19 

2.4.3 Embedding...........................................................................................................19 

2.5 Model Selection............................................................................................................ 20 

2.6 Prompt Engineering and Optimization......................................................................... 21 

2.7 Infrastructure and Deployment..................................................................................... 22 

3. Implementations and Results................................................................................................24 

3.1 Outline.......................................................................................................................... 24 

3 



3.2 Model Selection Finalisation........................................................................................ 24 

3.3 Document Conversion Efficiency.................................................................................25 

3.3.1 CERMINE’s Strengths.........................................................................................26 

3.3.2 Limitations and Cleanup Challenges................................................................... 26 

3.4 Performance Evaluation................................................................................................28 

3.4.1 Accuracy.............................................................................................................. 31 

3.4.2 Precision.............................................................................................................. 32 

3.4.2 Recall................................................................................................................... 33 

3.4.3 F1-Score...............................................................................................................33 

3.4.4 Qualitative Analysis.............................................................................................34 

3.4.5 Comparison to Baseline GPT-4........................................................................... 36 

3.5 User Interface................................................................................................................37 

3.5.1 Flask-Based Local Web UI.................................................................................. 37 

4. Future Works.........................................................................................................................39 

4.1 Web Interface and Scalable Deployment......................................................................39 

4.2 Collaboration with Archaeologists............................................................................... 39 

4.3 Enhancing Prompt Engineering....................................................................................40 

4.4 Expanding the Dataset.................................................................................................. 40 

4.5 Improving Document Conversion and Cleanup........................................................... 41 

5. Conclusion............................................................................................................................ 42 

Bibliography...........................................................................................................................43 

 

4 



List of Figures/Tables 

Figure 2.2.1 System Architecture of the Project.......................................................................11 

Figure 2.3.1 Ingestion and Retrieval with Embeddings [13]....................................................14 

Figure 2.3.2 Overview of LangChain’s Workflow [15]............................................................15 

Figure 2.4.1.1 CERMINE Workflow [17]................................................................................ 17 

Figure 2.4.1.2 Example of Failed XML Conversion................................................................ 18 

Figure 2.4.1. Splitting and Embed Workflow [18]................................................................... 19 

Figure 2.4.3.1 Vector Database Workflow [23]........................................................................ 20 

Figure 2.7.1 Screenshot of our Gradio Implementation........................................................... 23 

Figure 3.3.1 Screenshot of Converted XML file with Metadata.............................................. 26 

Figure 3.4.1 Visualization of Precision and Recall [32]...........................................................28 

Figure 3.4.2 Table of Answerable Questions used for Testing.................................................30 

Table 3.4.3 Table of Unanswerable Questions used for Testing...............................................30 

Table 3.4.4 Classification Breakdown of Testing Results........................................................ 31 

3.4.4.1 Table with Long Answer Question Example................................................................35 

Figure 3.4.5.1 Incorrect Output by Baseline GPT-4................................................................. 36 

Figure 3.4.5.2 Correct output with our RAG-enabled system..................................................36 

Figure 3.5.1.1 Screenshot of Web Interface..............................................................................38 

Figure 3.5.1.2 Screenshot of Application in Use......................................................................38 

 

 
 
 
 

5 



1. Introduction 

1.1 Project Background 

The application of Artificial Intelligence (AI), particularly machine learning, has seen 

substantial growth in fields spanning all forms of research, with researchers in the field of 

archaeology increasingly leveraging these technologies for tasks such as artifact 

classification, site prediction, and complex data analysis. For instance, Labba et al. (2023) 

showcase AI tools designed to empower archaeologists with data analytics capabilities 

without requiring programming expertise, highlighting AI’s expanding accessibility and 

utility within archaeological research workflows [1]. Similarly, other studies have highlighted 

the role of machine learning in enhancing site detection and artifact interpretation, as 

demonstrated by the Saruq Al Hadid project, which utilized AI to predict the locations of 

previously undiscovered structures [2]. 

 

Despite these advancements, archaeologists continue to face substantial challenges in 

managing the ever-expanding body of academic literature. AI-assisted systems, such as the 

AGNES project, have begun to address this issue by employing Named Entity Recognition 

(NER) to index extensive archaeological texts, enabling more accurate and context-aware 

search capabilities. In specific case studies, AGNES uncovered up to 30% more relevant 

findings than traditional methods, highlighting the inefficiencies in current literature review 

practices. Research suggests that archaeologists may spend a significant amount of their time 

manually reviewing literature, a process made increasingly difficult by the specialized 

vocabulary and interdisciplinary nature of the field [3]. 
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This growing adoption of AI in humanities research is well-documented, with EU reports 

emphasizing its transformative potential for archaeology and historical studies, particularly in 

site localization and enriched data interpretation [4]. However, the use of AI for 

archaeological knowledge management remains relatively underdeveloped and underutilized 

[19], particularly in the context of interpreting and synthesizing large bodies of academic 

literature, highlighting the need for domain-specific AI systems.  

 

1.2 Current Situation and Limitations 

While AI has found success in various archaeological applications, such as artifact 

restoration, predictive modeling, and historical text translation [5][6][31], the use of 

Generative AI specifically tailored for archaeological research remains underexplored. This 

presents a clear opportunity for the development in how archaeologists interact with, 

synthesize, and extract insights from academic literature and data.  

 

Despite the performance of current AI models like GPT-4o, these systems are primarily 

trained on broad, general-purpose datasets and are not fine-tuned for the nuances of 

archaeological discourse [3]. As a result, they often struggle with accurately retrieving and 

interpreting domain-specific information, such as specialized terminology, cultural context, or 

references to historical datasets and recent findings. This lack of specialization presents a 

challenge when using these models to support archaeological research.  

 

Furthermore, limited access to key academic resources presents a significant challenge. Many 

important archaeological publications remain behind paywalls or are difficult to find and 
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obtain, restricting AI developers’ ability to train models that engage with the full scope of 

current research literature [7][8]. Even when access is possible, technical limitations such as 

the context window constraint, such as with GPT-4o being capped at 128K tokens, restrict the 

model’s capacity to handle multiple full-length papers simultaneously [9]. This presents a 

challenge for users and researchers who wish to incorporate various research texts into a 

single query to perform more comprehensive and context-rich output generation, as currently 

available Generative AI models struggle or are not able to perform comprehensive 

cross-referencing or synthesize information from large volumes of input data. 

 

Thus, current limitations in AI architecture present significant challenges for archaeological 

research applications. Without integrated retrieval capabilities, these models struggle to 

maintain consistent contextual understanding across lengthy academic and research 

documents, or when requiring unavailable source materials. These constraints reduce the 

effectiveness of Generative AI for various research workflows, as they cannot reliably track 

arguments through extended texts, or effectively incorporate fragmented research sources, or 

adequately support complex analyses requiring the synthesis of multiple specialized works. 

These limitations are signiciant for archaeological studies, where examination of various 

interconnected sources and domain-specific knowledge is required. 
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1.3 Project Objective 

Working with Dr. Peter Cobb, this project aims to bridge the gap between AI and 

Archaeology by developing a domain-adapted Generative AI system tailored specifically for 

archaeological research. While existing AI models demonstrate strong capabilities in general 

natural language processing, they fall short when applied to domain-specific contexts like 

archaeology, struggling with limited literature access, and the ability to synthesize insights 

across multiple sources. This project seeks to address these challenges by creating a research 

assistant tool that leverages Generative AI to support archaeologists in navigating and 

interpreting large volumes of academic content.  

 

The system is designed to process PDF texts directly provided by researchers and users, 

enabling customized input and facilitating more targeted literature exploration. By 

incorporating techniques such as Retrieval-Augmented Generation (RAG), semantic 

chunking, and document-level structuring, the tool will provide context-aware, accurate, and 

traceable outputs grounded in real and customizable archaeological sources. This not only 

reduces the time spent on manual literature review but also enhances researchers’ ability to 

uncover connections and insights across documents.  

 

Motivated by the rapid advancement of AI technologies, our team also views this project as 

an opportunity to gain hands-on experience in developing applications with large language 

models. The process of tailoring AI capabilities to a specialized domain like archaeology 

allows us to explore the full potential of current generative technologies while contributing to 

the future of digital research tools in the field of archaeology. 
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2. Methodology 

2.1 Overview 

This section outlines the technical foundation and implementation strategy behind the 

development of our Generative AI system. It provides an explanation of the key technologies, 

model architecture, and design decisions that support the project’s objectives. Specifically, it 

will detail the tools and frameworks used, such as Retrieval-Augmented Generation (RAG) as 

a core methodology, alongside advanced techniques such as fine-tuning and prompt 

engineering, leveraging technologies such as LangChain, CERMINE, ChromaDB, and 

various AI models such as OpenAI’s GPT, along with the underlying algorithms and 

infrastructure setup that enable document processing, embedding, and retrieval.  

 

2.2 System Architecture 

This section will provide a brief explanation on the overall system architecture of our 

implementation, where the system is built around a modular, scalable pipeline specifically 

designed to process archaeological research papers and support accurate, context-aware 

AI-assisted research. The architecture is composed of four primary stages, each optimized to 

handle domain-specific challenges in working with complex academic literature. The pipeline 

enables seamless integration between document input, semantic indexing, and AI response 

generation, providing a foundation for interactive archaeological research assistance. 

10 



 

Figure 2.2.1 System Architecture of the Project 

 

2.2.1 Document Conversion & Structuring 

The workflow begins with converting raw research papers, in PDF format, into structured 

XML documents using CERMINE [10], a machine learning-based content extraction tool. 

CERMINE is chosen for its ability to retain rich metadata (e.g., section headings, references, 

author info), which is often lost in plain text extraction. The resulting XML files maintain a 

semantic structure, allowing for more organized processing and interpretation of different text 

types (e.g., body paragraphs vs. footnotes or references). This structured representation 

significantly improves the precision and consistency of downstream processing.  

 

2.2.2 Text Processing & Embedding 

Once the XML files are parsed, the text is processed and segmented into overlapping chunks 

to preserve contextual continuity. Currently, chunks are split into windows of  3800 characters 

with a 500-character overlap using LangChain’s text splitter tools, though the exact 
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parameters (window size, overlap, and splitting method) can be adjusted based on the specific 

requirements of the task, the model's context window limitations, or downstream processing 

needs. 

 

These chunks are then embedded into high-dimensional vector representations using 

embedding models, which capture the semantic meaning of the text, enabling similarity-based 

retrieval. Both the embeddings and their corresponding text chunks are stored in ChromaDB, 

a fast and scalable vector database. ChromaDB is optimized for similarity search, allowing 

the system to efficiently identify the most relevant information in response to user queries. 

 

 

2.2.3 Retrieval-Augmented Generation 

When a user submits a query, the system generates an embedding of the query using the same 

embedding model. This embedding is compared against those stored in ChromaDB using 

vector similarity metrics (e.g., cosine similarity) to retrieve the most relevant text chunks 

from the indexed literature.  

 

This Retrieval-Augmented Generation (RAG) approach supplements the generative model’s 

capabilities with real-time access to domain-specific information. Rather than relying solely 

on the language model’s internal training data, the system retrieves and incorporates external 

evidence to generate accurate, relevant, and up-to-date responses. This drastically reduces the 

risk of hallucinations and improves the quality of domain-specific answers, which is 

particularly important in archaeology, where precision and source-based interpretation are 

critical. 
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2.2.4 Response Generation & User Interface 

The final stage of the pipeline involves integrating the retrieved text chunks into a prompt 

template using LangChain. This templated prompt is then passed to an AI model, which 

generates a context-aware response informed by the retrieved literature. The output is 

displayed through a web-based user interface, allowing for quick testing, interaction, and 

demonstration of the system's functionality.  

 

This interface enables users, archaeologists, researchers, or students to interact with the AI 

system, which responds with detailed information drawn from its research database. 

 

 

2.3 Retrieval-Augmented Generation (RAG) Framework 

The Retrieval-Augmented Generation (RAG) framework is central to the system’s ability to 

produce accurate and contextually grounded responses based on archaeological literature. 

Unlike traditional generative models that rely solely on pre-trained internal knowledge, RAG 

enhances the output quality by incorporating real-time retrieval of relevant external 

documents [11]. This hybrid approach ensures that the model is not only generating correct 

responses but also ensuring that they are backed by verifiable academic content, thereby 

significantly reducing hallucinations and enhancing domain specificity [12]. 

In this system, when a user submits a query, it is first embedded into a dense vector using the 

same embedding model that was used during the document ingestion phase. This query vector 

is then used to search ChromaDB, a vector database optimized for sourcing semantic 

similarity, thus is able to identify the most relevant chunks of various archaeological texts. 
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These chunks are selected based on vector similarity, meaning the system retrieves passages 

that are conceptually aligned with the query, even if the vocabulary or phrasing differs. 

 

Figure 2.3.1 Ingestion and Retrieval with Embeddings [13] 

The retrieved text segments are then passed into LangChain, a powerful open-source 

framework designed for building language model-powered applications that interact with 

external data [14]. LangChain serves as the orchestration layer in this pipeline, dynamically 

formatting and constructing the input prompt for the large language model. It integrates the 

retrieved chunks alongside the user’s query into a structured, context-rich prompt, ensuring 

the model has access to the most relevant background information when generating a 

response [15]. 

 

LangChain’s modular design also enables flexible experimentation with different retrieval 

strategies, prompt templates, and memory mechanisms, allowing our team to iterate and 

refine the RAG system efficiently [16]. In this project, LangChain played a key role in 
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maintaining the coherence and traceability of the AI's responses by tightly coupling the 

retrieval process with generation, which was essential in achieving our group’s goals. 

 

Figure 2.3.2 Overview of LangChain’s Workflow [15] 

Through the integration of the RAG framework, we were able to make significant progress in 

bridging the gap between general AI capabilities and the highly specialized needs of 

archaeological research. This allows the system to generate responses that are not only 

linguistically correct but also firmly rooted in domain-relevant and up-to-date literature.  
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2.4 Document Processing & Embedding 

The document processing and embedding stage is an essential step for enabling accurate 

semantic search and context-aware generation in our system. This phase transforms raw 

archaeological research papers into a structured and searchable vector format suitable for 

downstream AI tasks. It comprises three main steps: conversion, splitting, and embedding. 

 

2.4.1 Conversion 

Before settling on our current pipeline, we experimented with several approaches to convert 

archaeological research PDFs into a format suitable for large language models and 

Retrieval-Augmented Generation. Initially, we tested a range of OCR (Optical Character 

Recognition) tools, including commercial solutions like Adobe Acrobat's built-in OCR 

engine. While these tools were capable of extracting text, they presented several limitations: 

the process was slow, often inconsistent across documents with complex formatting or 

diagrams, non-automatable for large batches, and costly when scaling beyond a handful of 

files. These drawbacks made them unsuitable for a seamless, large-scale pipeline intended to 

support efficient querying and knowledge extraction. 

 
 
To address these issues, the pipeline now starts with the conversion of academic PDF 

documents into structured XML using CERMINE, a tool specialized in extracting metadata 

and content from scientific literature. CERMINE preserves essential structural components 

such as section headers, figure references, bibliographies, and citation markers, which are 

critical for parsing scholarly texts in a meaningful way [10].  
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Figure 2.4.1.1 CERMINE Workflow [17] 

 
 
However, in practice, CERMINE does not always produce clean or usable XML outputs. 

Some common issues include garbled characters (e.g., sequences of ???), or structural 

inconsistencies, which was often the result from scanning PDFs which contained language 

characters which were not supported, or complex formatting, or degraded source quality.  
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Figure 2.4.1.2 Example of Failed XML Conversion 

 
To address this, a custom cleanup program was developed to automatically post-process the 

raw XML output. This tool detects and removes corrupted content, normalizes various 

structures, thus ensuring consistency in structural tags. It is fully integrated into the document 

conversion workflow so that each uploaded PDF passes through CERMINE and then through 

the cleanup module before any downstream processing. This not only increases reliability but 

also ensures that only high-quality, parseable content enters the semantic pipeline.  

 

To enhance user accessibility, this entire process, from PDF upload to cleaned XML output, is 

embedded into the system’s web interface, enabling seamless document conversion with 

minimal user intervention.  
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2.4.2 Splitting 

 

Figure 2.4.1. Splitting and Embed Workflow [18] 
 
Once converted, the cleaned text is processed using LangChain’s text splitter, which divides it 

into smaller, manageable chunks for embedding [18]. In this implementation, we use 

3800-character chunks with a 500-character overlap. The overlap ensures continuity between 

chunks, preserving semantic context across boundaries, especially important in dense 

academic writing where key information may span multiple paragraphs. However, these 

parameters are adjustable and can be fine-tuned based on the specific use case, the model's 

context window limitations, or the nature of the source material. LangChain’s flexible 

splitting methods (by character, sentence, or token) further allow us to adapt the chunking 

strategy to different document types or downstream tasks. 

 

2.4.3 Embedding 

Each chunk is then transformed into a high-dimensional vector using OpenAI’s embedding 

model [21], which encodes the semantic meaning of the text into a numerical representation. 

These vectors are stored in ChromaDB, a vector database [20], which leverages SQL-like 

querying for efficient retrieval and management of embeddings. Unlike traditional SQL 
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databases that rely on exact keyword matching or structured joins, vector databases are able 

to use approximate nearest neighbor (ANN) searches to compare the semantic meaning of 

queries and documents through mathematical proximity.  

 

By storing embeddings in a structured yet flexible format such as this, ChromaDB enables 

SQL-compatible operations (such as filtering and indexing) while also supporting vector 

similarity searches for high performance. This hybrid approach allows the system to retrieve 

the most relevant chunks based on conceptual similarity rather than exact wording, thus 

combining the strengths of relational database management with advanced AI-driven search 

capabilities. 

 

 
 

Figure 2.4.3.1 Vector Database Workflow [23] 
 
 

2.5 Model Selection 

While the Retrieval-Augmented Generation (RAG) framework significantly reduces the 

reliance on extensive model pretraining, there remains a need for targeted model adaptation to 

ensure outputs are accurate, contextually appropriate, and aligned with our project’s aim. 
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As part of this exploration, we experimented with a range of models to determine their 

suitability for this use case. Notably, SciBERT, a BERT model trained on scientific 

publications [22], offered strong performance in parsing technical language and was 

particularly effective in understanding structured academic texts. Being freely available and 

open-source made SciBERT an accessible and cost-efficient option for experimentation. 

We also tested Google’s Gemini [24], which showed promising results in reasoning and 

general responsiveness across a variety of prompts. Like SciBERT, it was also freely 

accessible for development purposes. In contrast, GPT-4 (via OpenAI's API) required 

payment based on usage, introducing cost as a factor in sustained development. Despite this, 

GPT-4 delivered high-quality generation and strong performance across diverse prompts, 

making it a useful baseline for benchmarking. 

 

2.6 Prompt Engineering and Optimization 

Prompt engineering refers to the process of designing and refining the inputs (or prompts) 

given to a language model in order to guide it toward producing accurate, relevant, and useful 

responses [26]. Since large language models like GPT-4o generate outputs based entirely on 

the input they receive, the way a prompt is phrased, its structure, tone, and clarity, can 

significantly influence the model’s performance [25]. In domain-specific contexts like 

archaeology, prompt engineering is especially important to ensure that the AI produces 

responses that are not only factually correct but also aligned with scholarly conventions and 

expectations.  

In our system, LangChain plays a central role as it supports template-based prompting, 

enabling consistent formatting across diverse user queries. Simple queries like definitions 
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yield short, direct prompts, while more complex questions trigger more elaborate templates 

designed to encourage thoughtful, multi-layered responses.  

Additionally, we introduced logic for dynamic prompt adaptation—automatically adjusting 

the level of detail, tone, and citation structure based on the nature of the query. These 

optimizations were essential to improving both the quality and usability of responses, 

especially for archaeologists seeking in-depth answers grounded in specific excavation 

reports, journal articles, or technical documentation. 

Early in development, we found that standard prompts often led to overly generic or brief 

answers. To address this, we fine-tuned our templates to request longer, more detailed 

outputs, and made sure that each piece of generated content clearly cited the source document 

from which the information was retrieved, improving the academic reliability of the system. 

 

2.7 Infrastructure and Deployment 

The system is built on a modular and scalable backend infrastructure, primarily developed in 

Python, which integrates several key components: LangChain for prompt orchestration, 

ChromaDB as the vector database for semantic retrieval, and OpenAI’s API for access to 

advanced language models such as GPT-4o. This backend pipeline enables seamless 

interaction between document processing, vector search, and generative response generation, 

ensuring fast and accurate performance. 

For the user interface (UI), we adopted a two-pronged approach to support both development 

testing and potential deployment: 
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● Flask was used to build a lightweight, local web UI. This interface allows researchers 

and developers to upload their own PDF files, submit queries, and view results 

through a clean, interactive dashboard. Flask’s simplicity and flexibility made it an 

ideal choice for prototyping and internal use. 

 

● In parallel, we integrated Gradio [27], a Python library that enables the creation of 

browser-based UIs with minimal overhead. Gradio was particularly useful for 

temporary server hosting, live demonstrations, and remote user testing, allowing us to 

share our system easily with collaborators without requiring full deployment. 

 

 

Figure 2.7.1 Screenshot of our Gradio Implementation 

This dual-UI setup provided flexibility throughout development, where Flask acts as a more 

controlled, customizable implementation, while Gradio excels in the quick iterations and 

accessibility.  
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3. Implementations and Results 

3.1 Outline 

This chapter outlines our practical implementation of our Generative AI system and 

highlights key outcomes and results derived from its deployment.  

 

3.2 Model Selection Finalisation  

The selection of the appropriate language model was a critical step in the development of our 

system, as it directly impacts the quality, relevance, and flexibility of the generated responses. 

To make an informed choice, we conducted comparative testing across several advanced 

models, including Google’s Gemini, SciBERT, and OpenAI’s GPT-4, among others. Each 

model was evaluated based on key criteria such as accuracy on domain-specific tasks, ease of 

integration with our pipeline, cost, and performance on a small test dataset curated from 

archaeological texts and queries.  

 

SciBERT, a transformer model pre-trained on scientific literature, showed promise in its 

ability to understand academic language and terminology. It performed reasonably well on 

certain retrieval tasks, particularly in extracting factual content from scholarly sources. 

Additionally, it was completely open-source and free, making it an attractive option for 

cost-sensitive use cases. However, its lack of native integration with modern frameworks like 

LangChain, as well as its limited generative capabilities, made it less suitable for our project’s 

goals [22].  

 

Google Gemini, another freely available model, offered impressive generative output but 

presented difficulties in integration due to API restrictions and limited documentation for 

24 



customization. While it produced initial satisfactory responses, it also lacked the depth and 

flexibility needed to support our full RAG pipeline without significant workarounds.  

 

Ultimately, we selected OpenAI’s GPT-4 as the core model for our system. Despite the 

associated cost, GPT-4 consistently outperformed the others in terms of output quality, 

robustness, and reliability. Its compatibility with the LangChain framework, seamless API 

integration, and capacity to handle complex prompts made it the most practical choice for a 

project requiring nuanced and context-rich responses. Furthermore, GPT-4 demonstrated 

strong performance on domain-specific tasks such as interpreting archaeological terminology, 

generating structured summaries, and maintaining contextual consistency across long-form 

queries.  

 

While other models showed potential and remain viable options for future iterations or 

budget-conscious applications, GPT-4 provided the best balance of accuracy, usability, and 

ecosystem support, making it the ideal choice for the implementation of our project. 

 

3.3 Document Conversion Efficiency 

The first stage of our implemented pipeline, document conversion, focused on transforming 

unstructured archaeological PDFs into structured XML files using the aforementioned 

CERMINE, thus transforming texts to be more suitable for downstream processing.  
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3.3.1 CERMINE’s Strengths 

CERMINE demonstrated strong capabilities in handling a wide range of academic document 

layouts, from highly formatted journal articles to less structured excavation reports and 

textbooks. It effectively preserved critical metadata such as: 

● Section headers and titles 

● Bibliographic references and citation markers 

● Author and publication metadata 

Figure 3.3.1 Screenshot of Converted XML file with Metadata 

This structured output greatly improved our ability to parse and segment text in a meaningful 

way, enabling more precise chunking and retrieval in later stages. Thus, CERMINE was able 

to retain a large portion of key metadata elements throughout the conversion process. 

 

3.3.2 Limitations and Cleanup Challenges 

Despite these strengths, 34 out of 219 processed documents (roughly 15.5%) required cleanup 

due to incomplete or flawed XML output. Common issues included: 
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● Garbled text and replacement characters (e.g., “???”): Often caused by embedded and 

unsupported fonts/characters, or scanned image-based PDFs, where character 

encoding was not preserved correctly. 

● Non-standard formatting: Documents with multi-column layouts, footnotes, sidebars, 

or complex table structures frequently caused errors or omissions during extraction. 

To mitigate these issues, we implemented an automated cleanup process that is integrated 

directly into the conversion pipeline. This algorithm scanned for and removed corrupted 

content and handled placeholder characters, as well as fixed and normalised various text 

structures caused by different PDF templates. Thus, if the PDF-to-XML conversion process 

outputs files containing texts that couldn't be preserved or confidently recovered, the cleanup 

program would detect and remove those portions. or, in some cases, discard the document 

entirely from the database.  

This cleanup step, while essential, introduced a tradeoff, where several documents lost large 

portions of content, rendering them partially or entirely unusable by the AI. However, this 

step was required, as when working with generative AI, providing no information is 

significantly better than providing inaccurate or corrupted information [28]. Some reasons 

include the following: 

● Hallucination risk: Incorrect or garbled text can lead to misleading outputs from the 

language model, potentially fabricating citations or drawing false conclusions [29]. 

● Loss of trust: In academic and research contexts, factual integrity is extremely 

important. A single hallucinated statement based on bad input can undermine the 

credibility of the entire system, and subsequent generated results. 

● Retrieval quality: Faulty embeddings based on noisy or malformed text reduce the 

accuracy of vector-based retrieval, which degrades overall system performance. 
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By filtering out compromised content, we ensured the reliability of our system, thus making 

sure that the AI only generated responses grounded in verified, high-quality source materials. 

While this meant sacrificing volume, it helped maintain the intellectual rigor and domain 

specificity necessary for archaeological research [30]. 

 

3.4 Performance Evaluation 

To assess the system’s effectiveness, we implemented various evaluation metrics to 

objectively measure our implementation’s performance. By applying precision, recall, and F1 

score calculation to a custom benchmark set of 125 questions, we designed a process to 

evaluate both factual accuracy and the system's ability to avoid hallucinations. We detail how 

each metric is calculated, what it measures, and why it matters in the context of 

archaeological research. These metrics are complemented by comparisons to a baseline 

GPT-4 model without RAG, showing the tangible improvements offered by document 

grounding. 

 

Figure 3.4.1 Visualization of Precision and Recall [32] 
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We developed a benchmark set of 125 questions where: 100 questions had answers which 

were answerable using the embedded data, and  25 questions that were unanswerable from the 

given materials. This was designed to test whether the AI could recognize when it should not 

fabricate an answer. The questions were primarily created manually, and answers were 

manually verified to ensure fairness and accuracy. This was essential because minor 

variations in phrasing could still yield correct answers, thus causing misclassification.  

 

Some examples of the questions are as below: 

Answerable Questions Expected Answer Source 

During which historical period does 

the document provide evidence for the 

establishment of the Ultan Qalasi 

settlement? 

The Sasanian period Alizadeh2011-UltanQal

asi.pdf 

Which century is the earliest mention 

of the Ghilghilchay defensive long 

wall dated to? 

7th century AD AlievEtal2006-Ghilghil

chayDefensiveLongWal

l.pdf 

Which two Sasanian rulers are 

traditionally credited with directing 

large-scale projects, including land 

reform and irrigation systems, 

according to historical accounts? 

Kawad I and Husraw I 

Anushirwan 

Alizadeh2014-Borderla

ndProjectsSasanian.pdf 

Figure 3.4.2 Table of Answerable Questions used for Testing 
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These questions are derived from texts that were successfully converted into structured XML 

files and embedded into the vector database. Thus, the model should have access to the 

relevant source material, meaning that all questions in this set should be answerable based on 

the stored content. 

 

Some examples of questions used to test hallucinations are as follows: 

Unanswerable Questions Source 

What are the four main factors that explain 

the Elymaeans' rise as a major power in 

Khuzestan? 

Alizadeh1985-ElymaeanOccupationofLowe

rKhuzestan.pdf  

 

 

Which nomadic tribes threatened Parthia 

after 129 BC? 

Early Parthian coins from Margiana.pdf 

Table 3.4.3 Table of Unanswerable Questions used for Testing 

 

These questions were deliberately crafted using archaeological texts that had failed XML 

conversion, thus they were not successfully parsed and were excluded from the embedding 

process. As a result, the model had no access to the information contained within those 

documents in the vector database. This setup ensured that any correct-looking answer would 

be the result of hallucination, rather than valid retrieval, allowing us to effectively evaluate 

the system’s ability to handle unanswerable queries and to distinguish between retrieved 

knowledge and fabricated content.  
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The AI’s performance on this test set was as followed: 

● Correctly answered 92 out of 100 valid questions 

● Incorrectly answered 6 out of 25 unanswerable ones (i.e., hallucinated 6 responses) 

● Missed 8 correct questions 

 

These observations translate to the following classification breakdown: 

 Predicted Correct Predicted Incorrect 

Actually Correct 92 (True Positives) 8 (False Negatives) 

Actually Incorrect 6 (False Positives) 19 (True Negatives) 

Table 3.4.4 Classification Breakdown of Testing Results 

3.4.1 Accuracy 

During the interim reporting phase, we focused primarily on simple information extraction 

tasks, such as identifying named entities, dates,etc from archaeological texts. These questions 

were drawn from a manually curated set of 75 queries, all of which were intended to be 

answerable given the available input, of which, 68 correct answers were generated. This led 

to a raw accuracy of approximately 91%. 

 

Using our current test case, with the curated set expanded to 100 answerable queries, the 

model returned 92 correct answers, thus resulting in a raw accuracy of 92%. While this marks 

only a 1% increase in raw accuracy, the improvement is notable given the larger and more 

diverse question set, which introduces greater complexity and reduces variance due to random 

chance. Moreover, raw accuracy alone does not account for important factors such as false 

positives (i.e., hallucinated answers to unanswerable questions) or false negatives (i.e., missed 

correct answers), which can significantly impact the system's reliability in real-world use. 
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These issues are addressed more thoroughly in the precision, recall, and F1 score metrics 

discussed below. 

3.4.2 Precision 

Precision measures how many of the model’s seemingly correct responses were actually 

factually accurate. It is calculated as the number of true positives (correct answers) divided by 

the total number of positive responses (true positives + false positives). In our test set of 125 

questions, 25 were intentionally unanswerable to simulate conditions where a well-grounded 

model should refuse to generate speculative or hallucinated answers. Precision is especially 

important in academic contexts like archaeology, where the cost of providing incorrect 

information can be significant.  

 

Calculating the precision [32] using the aforementioned values: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃  =  92

92 + 6  ≈  93. 88%

 

Where TP (True Positive) = 92, and FP (False Positive) = 6. 

 

A precision of 93.88% means that nearly all of the AI's responses were accurate. In 

archaeological applications, this high precision is crucial to avoid hallucinations, especially 

when users might act on these results in academic or field settings. 

However, there is room for further optimization. Some false positives stemmed from 

hallucinations caused by incorrect or incomplete retrieval, ambiguous phrasing in prompts, or 

noisy input data [33]. Improving the conversion process (e.g., cleaner XML generation), 
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refining chunk overlap and formatting, and designing more context-sensitive prompts could 

help further reduce these errors and push precision even higher. 

 

3.4.2 Recall 

Recall evaluates the model’s ability to retrieve and correctly respond to all valid questions. It 

is calculated as the number of true positives divided by the total number of actual answerable 

questions (true positives + false negatives). False negatives occur when the model fails to 

provide a correct answer to a question it should have been able to answer, potentially due to 

context misalignment, misinterpretation, or insufficient retrieval coverage.  

 

Calculating the recall [32] using the stored values: 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁  =  92

92 + 8  =  92%

Where FN (False Negatives) = 8, as (100 total valid questions – 92 correctly answered = 8) 
 
 

This recall value indicates the model is consistently able to find the correct information when 

it exists. However, recall is sensitive to retrieval quality, and if the right chunk wasn’t 

retrieved (due to limitations in embedding similarity, window sizes, chunk boundaries, etc), 

the model is unlikely to answer correctly, even if the underlying LLM has the capacity. 

 

3.4.3 F1-Score 

The F1-score provides a balanced measure between precision and recall [34], especially 

useful in applications like ours where both false positives (hallucinations) and false negatives 
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(missed answers) are problematic. It is the harmonic mean of precision and recall, calculated 

as followed: 

 

 𝐹
1
 𝑆𝑐𝑜𝑟𝑒 = 2

1
𝑅𝑒𝑐𝑎𝑙𝑙 + 1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙   

 

 =  2 ×  93.88 × 92
93.88 + 92  ≈ 92. 93 

 

This F1 score demonstrates strong overall robustness, balancing the model’s ability to answer 

correctly and its caution in avoiding hallucinations, though some loss occurred, perhaps due 

to missed context or chunk mismatches, highlighting areas for further refinement in chunk 

overlap logic, source formatting, and prompt improvements. 

 

The reason the F1 score is particularly useful in our case is because it takes both false 

positives (incorrect answers) and false negatives (missed correct answers) into account. This 

is significant when dealing with domain-specific tasks, like archaeological research, where a 

single incorrect or missed answer can significantly affect the model's usefulness in practice. 

Overall, the F1 score provides a more balanced view of model performance compared to 

accuracy alone. While accuracy can be skewed by imbalances in the number of answerable 

and unanswerable questions, the F1 score mitigates this bias by considering how well the 

model balances both precision and recall. 

 

3.4.4 Qualitative Analysis 

In addition to quantitative metrics, we conducted a qualitative review of the model’s 

responses. In several cases, the answers were holistically correct, even if they missed specific 
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details or phrased the information differently than expected. These types of responses suggest 

that while the core understanding is overall accurate, the model may occasionally sometimes 

overlook certain things, such as complex terminology or multi-part reasoning.  

 

An example of a long answer question is as follows: 

Long Answer Questions Answer should contain the 
following: 

Source 

The author mentions that 

Sasanian society had multiple 

language groups and that 

surviving texts are mainly 

male-centric and religious. 

What is one challenge this 

presents for understanding 

Sasanian society? 

It can be difficult to fully 

understand the history and 

culture of non-Iranian 

language groups, and the 

perspectives of women and the 

poor may be marginalized. 

(Both points can be considered 

valid answers). 

Daryaee2009-SasanianPe

rsiaRiseFallEmpire.pdf 

Table 3.4.4.1 Long Answer Question Example 
 
Where the result of the AI would be read to assess whether the overall gist and intent of the 

answer aligned with the expected response. However, this method is inherently subjective and 

lacks the strict reproducibility of quantitative metrics.  

 

We acknowledge that while this has assisted us in identifying potential strengths and 

weaknesses in contextual understanding, it does not provide a consistent or scalable 

framework for benchmarking. Therefore, establishing more standardized qualitative 

evaluation methods, potentially with rubric-based scoring or expert reviews, is a key 

consideration for future development, as outlined in the next chapter describing future works. 
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3.4.5 Comparison to Baseline GPT-4 

For comparison, we also tested the same GPT-4 model without our RAG-based 

enhancements. This version of the model, which relied solely on its pre-trained internal 

knowledge, produced incomplete or factually incorrect answers, particularly on 

domain-specific archaeological queries. The absence of direct access to reference material 

meant that the model would often hallucinate inaccurate information.  

 

Figure 3.4.5.1 Incorrect Output by Baseline GPT-4 

In contrast, our full pipeline showed  improvements regarding such issues. When asked the 

same question across both versions, the RAG-enabled system was able to pull in the correct 

contextual chunks and provided answers aligned with the original source material. This would 

indicate a reduction in hallucinations and an increase in both the reliability and explainability 

of responses.  

 

 

 

 

Figure 3.4.5.2 Correct output with our RAG-enabled system 
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3.5 User Interface  

For the user interface (UI) of our AI application, we adopted a Flask-based approach to 

support local development, researcher interaction, and early-stage deployment. Flask, being a 

lightweight and highly flexible Python web framework, was chosen for its ease of integration 

with the rest of our Python-based backend, including LangChain, ChromaDB, and OpenAI’s 

API. Its modularity also makes it ideal for future integration with production-grade servers 

and authentication systems. 

As mentioned, we implemented a Gradio interface, a browser-based UI toolkit that allowed us 

to share the system for remote access, live demonstrations, and collaborative feedback 

sessions. Gradio requires minimal configuration and works seamlessly with our Python 

backend, making it ideal for quick deployments on temporary servers or for showcasing 

functionality without full-scale deployment. 

3.5.1 Flask-Based Local Web UI 

For local use, we implemented a clean, lightweight web interface using Flask. The design of 

the Flask UI emphasizes usability and intuitiveness, especially for non-technical users such as 

archaeologists or research assistants. 

● On the left-hand side of the page, users can upload PDF or XML files directly into the 

system. This file uploader is integrated with our backend pipeline, triggering the 

CERMINE conversion and cleanup process upon submission automatically. 

 

● On the right-hand side, a chat-like query interface allows users to enter natural 

language questions, which are then processed via the RAG pipeline. 
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Figure 3.5.1.1 Screenshot of Web Interface 

 

This layout would hopefully support a smooth, guided workflow: upload documents, ask 

questions, receive answers—with no need for separate scripts or command-line tools. Flask’s 

lightweight nature also makes it easily integrated with other server systems, supporting future 

deployment in cloud or academic environments. 

 

Figure 3.5.1.2 Screenshot of Application in Use 
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4. Future Works 

In this section, we outlined various key areas for further development and improvement that 

could be made regarding our project’s implementation.  

4.1 Web Interface and Scalable Deployment 

One of the major goals for future work is to transition our current local web based 

implementation towards a  scalable server system that would significantly improve the 

accessibility and usability of the AI tool for a wider range of archaeologists.  

 

By supporting a larger number of concurrent users, this system would allow archaeologists 

from various institutions and fields to upload their research, query the AI, and receive 

real-time, contextually grounded responses. This infrastructure would enable seamless 

collaboration, allowing researchers to test the model with their specific datasets and refine the 

AI’s capabilities based on the increasing pool of resources uploaded by users.  

 

Furthermore, by allowing archaeologists and researchers to directly interact with our 

application, it would assist in driving further improvements tailored to the needs of the 

archaeological community, and would directly support the next phase of work, where we aim 

to expand collaboration further and engage with experts in refining the system's performance. 

 

4.2 Collaboration with Archaeologists 

Engaging and collaborating with experts in the field of archaeology would assist us in 

performing long-form qualitative evaluations, refining question sets, and identifying gaps in 
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contextual interpretation, thus improving the AI’s accuracy and relevance. Through direct 

feedback from archaeologists, we can enhance the model's ability to handle complex, 

long-form queries, improve its comprehension of archaeological terminology, and address 

any overlooked nuances in field-specific practices. Thus, it would allow for targeted 

adjustments and fine-tuning to improve its usefulness for archaeological research. 

 

4.3 Enhancing Prompt Engineering 

In the future, perhaps utilising the information received in the aforementioned archaeologists’ 

feedback, improvements to our prompt templates could be made to better suit the needs of 

real-world archaeological research. This may involve tailoring the structure and tone of 

prompts to reflect the way archaeologists frame inquiries, incorporating domain-specific 

terminology, or adjusting the level of detail requested to align with academic expectations.  

 

4.4 Expanding the Dataset 

Expanding the dataset could also further enhance the AI’s performance. Currently, the model 

operates on a relatively limited collection of texts (Approximately 217), which can cause 

constraints in its ability to generate comprehensive responses, particularly for niche or highly 

specialized queries.  

 

By incorporating a broader dataset of archaeological material, we can significantly increase 

the breadth and depth of the knowledge base the AI can draw upon. This would make the 

system more representative of the many subfields and regional variations within archaeology. 

This could be aided by the aforementioned scalable deployment, as that would allow 
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archaeologists and researchers to upload their own curated datasets to the system. This 

collaborative model would not only enrich the existing knowledge base but also foster a 

feedback loop where the AI becomes increasingly tailored to the specific needs and interests 

of its users. 

 

4.5 Improving Document Conversion and Cleanup 

Despite the improvements in the document conversion pipeline using CERMINE, there are 

still challenges associated with extracting usable data from complex or poorly structured PDF 

documents. Refinements to the conversion and cleanup process could be made, such as 

recovering more usable data from difficult layouts, such as scanned documents.  

 

Other PDF-to-XML conversion libraries and tools may be developed and implemented to 

achieve this, or alternative preprocessing methods could be explored to improve data quality 

and reduce the need for manual cleanup. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

41 



5. Conclusion 

This project explored the development of a Retrieval-Augmented Generation (RAG) system 

tailored for archaeological research, with the goal of enhancing access to and interpretation of 

complex academic literature. By combining tools like CERMINE for document conversion, 

LangChain for prompt orchestration, ChromaDB for vector-based retrieval, and OpenAI’s 

GPT-4 for generation, we built a prototype capable of delivering contextually grounded and 

accurate responses to answer archaeological queries.  

 

The system demonstrated clear improvements over a standard generative model, particularly 

in reducing hallucinations and improving specificity. Through various metrics, we measured 

notable improvements in regards to the effectiveness of our approach. Our pipeline was 

further supported by a lightweight and user-intuitive web interface built with Flask, enabling 

easy document uploads and query interactions.  

 

However, there are limitations and improvements to be made. Challenges in document 

conversion accuracy, prompt robustness, and database coverage all affect the system’s 

performance. Addressing these issues will require further optimizations and improvements, 

alongside the help and collaboration of experts in the field of archaeology.   

 

If these improvements are made, this AI model could become a useful tool for archaeologists, 

supporting their research and hopefully making their work more efficient and accessible. With 

continued development, the system has the potential to integrate seamlessly into existing 

research workflows and contribute meaningfully to archaeological research, especially in 

light of the growing adoption of generative AI across academic and scientific fields. 
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