
COMP4801 Final Year Project

The University of Hong Kong

Department of Computer Science

Final Report

Generative AI for Researching Archaeology

Submitted on: 21st April 2025

Supervisor: Dr. Schnieders, Dirk

Submitted By: Lam Jiho (3035824273)

Abstract

The increasing integration of Artificial Intelligence (AI) in academic research presents

exciting opportunities for archaeology, a field burdened by the challenges of processing vast

amounts of specialized literature. In this project, we explored the development of a

Generative AI system specifically designed to address the unique needs of archaeological

research. While current AI models demonstrate strong general language capabilities, they face

significant limitations in domain-specific interpretation, context window constraints, and

access to paywalled academic resources.

To overcome these barriers, we implemented a Retrieval-Augmented Generation (RAG)

pipeline enhanced by fine-tuning techniques and structured document processing. Our system

employs CERMINE for intelligent PDF-to-XML conversion, LangChain for semantic text

chunking and embedding, and ChromaDB for efficient vector-based retrieval. This

architecture enables archaeologists to query complex research questions while maintaining

accuracy through source-grounded responses.

The resulting tool significantly improves research efficiency by automating the literature

review process, enabling rapid synthesis of archaeological knowledge, and providing

context-aware analysis of specialized texts. Beyond its practical applications, this project

serves as a case study in adapting cutting-edge AI technologies to humanities research,

demonstrating how customized implementations can bridge the gap between general-purpose

AI and domain-specific research needs. Our work aims to not only advance archaeological

methodology but also contribute towards broader discussions about AI's role in transforming

academic research practices across disciplines.

1

Acknowledgements

I would first like to express our gratitude to Dr. Peter Cobb for his guidance in initiating this

interdisciplinary research direction, and his expertise invaluable throughout this project.

I am also grateful to our supervisor Dr. Dirk Schnieders for his mentorship throughout the

project’s development. His feedback and thoughtful advice were instrumental in shaping our

research goals, methodology, and implementation.

I extend my thanks to my teammate, Fan Yian, whose dedicated participation and seamless

cooperation made this project possible.

2

Table of Contents:

1. Introduction...6

1.1 Project Background.. 6

1.2 Current Situation and Limitations.. 7

1.3 Project Objective.. 9

2. Methodology...10

2.1 Overview...10

2.2 System Architecture..10

2.2.1 Document Conversion & Structuring.. 11

2.2.2 Text Processing & Embedding...11

2.2.3 Retrieval-Augmented Generation..12

2.2.4 Response Generation & User Interface... 13

2.3 Retrieval-Augmented Generation (RAG) Framework... 13

2.4 Document Processing & Embedding..16

2.4.1 Conversion...16

2.4.2 Splitting..19

2.4.3 Embedding...19

2.5 Model Selection.. 20

2.6 Prompt Engineering and Optimization... 21

2.7 Infrastructure and Deployment... 22

3. Implementations and Results..24

3.1 Outline.. 24

3

3.2 Model Selection Finalisation.. 24

3.3 Document Conversion Efficiency...25

3.3.1 CERMINE’s Strengths...26

3.3.2 Limitations and Cleanup Challenges... 26

3.4 Performance Evaluation..28

3.4.1 Accuracy.. 31

3.4.2 Precision.. 32

3.4.2 Recall... 33

3.4.3 F1-Score...33

3.4.4 Qualitative Analysis...34

3.4.5 Comparison to Baseline GPT-4... 36

3.5 User Interface..37

3.5.1 Flask-Based Local Web UI.. 37

4. Future Works...39

4.1 Web Interface and Scalable Deployment..39

4.2 Collaboration with Archaeologists... 39

4.3 Enhancing Prompt Engineering..40

4.4 Expanding the Dataset.. 40

4.5 Improving Document Conversion and Cleanup... 41

5. Conclusion.. 42

Bibliography...43

4

List of Figures/Tables

Figure 2.2.1 System Architecture of the Project...11

Figure 2.3.1 Ingestion and Retrieval with Embeddings [13]..14

Figure 2.3.2 Overview of LangChain’s Workflow [15]..15

Figure 2.4.1.1 CERMINE Workflow [17].. 17

Figure 2.4.1.2 Example of Failed XML Conversion.. 18

Figure 2.4.1. Splitting and Embed Workflow [18]... 19

Figure 2.4.3.1 Vector Database Workflow [23].. 20

Figure 2.7.1 Screenshot of our Gradio Implementation... 23

Figure 3.3.1 Screenshot of Converted XML file with Metadata.. 26

Figure 3.4.1 Visualization of Precision and Recall [32]...28

Figure 3.4.2 Table of Answerable Questions used for Testing...30

Table 3.4.3 Table of Unanswerable Questions used for Testing...30

Table 3.4.4 Classification Breakdown of Testing Results.. 31

3.4.4.1 Table with Long Answer Question Example..35

Figure 3.4.5.1 Incorrect Output by Baseline GPT-4... 36

Figure 3.4.5.2 Correct output with our RAG-enabled system..36

Figure 3.5.1.1 Screenshot of Web Interface..38

Figure 3.5.1.2 Screenshot of Application in Use..38

5

1. Introduction

1.1 Project Background

The application of Artificial Intelligence (AI), particularly machine learning, has seen

substantial growth in fields spanning all forms of research, with researchers in the field of

archaeology increasingly leveraging these technologies for tasks such as artifact

classification, site prediction, and complex data analysis. For instance, Labba et al. (2023)

showcase AI tools designed to empower archaeologists with data analytics capabilities

without requiring programming expertise, highlighting AI’s expanding accessibility and

utility within archaeological research workflows [1]. Similarly, other studies have highlighted

the role of machine learning in enhancing site detection and artifact interpretation, as

demonstrated by the Saruq Al Hadid project, which utilized AI to predict the locations of

previously undiscovered structures [2].

Despite these advancements, archaeologists continue to face substantial challenges in

managing the ever-expanding body of academic literature. AI-assisted systems, such as the

AGNES project, have begun to address this issue by employing Named Entity Recognition

(NER) to index extensive archaeological texts, enabling more accurate and context-aware

search capabilities. In specific case studies, AGNES uncovered up to 30% more relevant

findings than traditional methods, highlighting the inefficiencies in current literature review

practices. Research suggests that archaeologists may spend a significant amount of their time

manually reviewing literature, a process made increasingly difficult by the specialized

vocabulary and interdisciplinary nature of the field [3].

6

This growing adoption of AI in humanities research is well-documented, with EU reports

emphasizing its transformative potential for archaeology and historical studies, particularly in

site localization and enriched data interpretation [4]. However, the use of AI for

archaeological knowledge management remains relatively underdeveloped and underutilized

[19], particularly in the context of interpreting and synthesizing large bodies of academic

literature, highlighting the need for domain-specific AI systems.

1.2 Current Situation and Limitations

While AI has found success in various archaeological applications, such as artifact

restoration, predictive modeling, and historical text translation [5][6][31], the use of

Generative AI specifically tailored for archaeological research remains underexplored. This

presents a clear opportunity for the development in how archaeologists interact with,

synthesize, and extract insights from academic literature and data.

Despite the performance of current AI models like GPT-4o, these systems are primarily

trained on broad, general-purpose datasets and are not fine-tuned for the nuances of

archaeological discourse [3]. As a result, they often struggle with accurately retrieving and

interpreting domain-specific information, such as specialized terminology, cultural context, or

references to historical datasets and recent findings. This lack of specialization presents a

challenge when using these models to support archaeological research.

Furthermore, limited access to key academic resources presents a significant challenge. Many

important archaeological publications remain behind paywalls or are difficult to find and

7

obtain, restricting AI developers’ ability to train models that engage with the full scope of

current research literature [7][8]. Even when access is possible, technical limitations such as

the context window constraint, such as with GPT-4o being capped at 128K tokens, restrict the

model’s capacity to handle multiple full-length papers simultaneously [9]. This presents a

challenge for users and researchers who wish to incorporate various research texts into a

single query to perform more comprehensive and context-rich output generation, as currently

available Generative AI models struggle or are not able to perform comprehensive

cross-referencing or synthesize information from large volumes of input data.

Thus, current limitations in AI architecture present significant challenges for archaeological

research applications. Without integrated retrieval capabilities, these models struggle to

maintain consistent contextual understanding across lengthy academic and research

documents, or when requiring unavailable source materials. These constraints reduce the

effectiveness of Generative AI for various research workflows, as they cannot reliably track

arguments through extended texts, or effectively incorporate fragmented research sources, or

adequately support complex analyses requiring the synthesis of multiple specialized works.

These limitations are signiciant for archaeological studies, where examination of various

interconnected sources and domain-specific knowledge is required.

8

1.3 Project Objective

Working with Dr. Peter Cobb, this project aims to bridge the gap between AI and

Archaeology by developing a domain-adapted Generative AI system tailored specifically for

archaeological research. While existing AI models demonstrate strong capabilities in general

natural language processing, they fall short when applied to domain-specific contexts like

archaeology, struggling with limited literature access, and the ability to synthesize insights

across multiple sources. This project seeks to address these challenges by creating a research

assistant tool that leverages Generative AI to support archaeologists in navigating and

interpreting large volumes of academic content.

The system is designed to process PDF texts directly provided by researchers and users,

enabling customized input and facilitating more targeted literature exploration. By

incorporating techniques such as Retrieval-Augmented Generation (RAG), semantic

chunking, and document-level structuring, the tool will provide context-aware, accurate, and

traceable outputs grounded in real and customizable archaeological sources. This not only

reduces the time spent on manual literature review but also enhances researchers’ ability to

uncover connections and insights across documents.

Motivated by the rapid advancement of AI technologies, our team also views this project as

an opportunity to gain hands-on experience in developing applications with large language

models. The process of tailoring AI capabilities to a specialized domain like archaeology

allows us to explore the full potential of current generative technologies while contributing to

the future of digital research tools in the field of archaeology.

9

2. Methodology

2.1 Overview

This section outlines the technical foundation and implementation strategy behind the

development of our Generative AI system. It provides an explanation of the key technologies,

model architecture, and design decisions that support the project’s objectives. Specifically, it

will detail the tools and frameworks used, such as Retrieval-Augmented Generation (RAG) as

a core methodology, alongside advanced techniques such as fine-tuning and prompt

engineering, leveraging technologies such as LangChain, CERMINE, ChromaDB, and

various AI models such as OpenAI’s GPT, along with the underlying algorithms and

infrastructure setup that enable document processing, embedding, and retrieval.

2.2 System Architecture

This section will provide a brief explanation on the overall system architecture of our

implementation, where the system is built around a modular, scalable pipeline specifically

designed to process archaeological research papers and support accurate, context-aware

AI-assisted research. The architecture is composed of four primary stages, each optimized to

handle domain-specific challenges in working with complex academic literature. The pipeline

enables seamless integration between document input, semantic indexing, and AI response

generation, providing a foundation for interactive archaeological research assistance.

10

Figure 2.2.1 System Architecture of the Project

2.2.1 Document Conversion & Structuring

The workflow begins with converting raw research papers, in PDF format, into structured

XML documents using CERMINE [10], a machine learning-based content extraction tool.

CERMINE is chosen for its ability to retain rich metadata (e.g., section headings, references,

author info), which is often lost in plain text extraction. The resulting XML files maintain a

semantic structure, allowing for more organized processing and interpretation of different text

types (e.g., body paragraphs vs. footnotes or references). This structured representation

significantly improves the precision and consistency of downstream processing.

2.2.2 Text Processing & Embedding

Once the XML files are parsed, the text is processed and segmented into overlapping chunks

to preserve contextual continuity. Currently, chunks are split into windows of 3800 characters

with a 500-character overlap using LangChain’s text splitter tools, though the exact

11

parameters (window size, overlap, and splitting method) can be adjusted based on the specific

requirements of the task, the model's context window limitations, or downstream processing

needs.

These chunks are then embedded into high-dimensional vector representations using

embedding models, which capture the semantic meaning of the text, enabling similarity-based

retrieval. Both the embeddings and their corresponding text chunks are stored in ChromaDB,

a fast and scalable vector database. ChromaDB is optimized for similarity search, allowing

the system to efficiently identify the most relevant information in response to user queries.

2.2.3 Retrieval-Augmented Generation

When a user submits a query, the system generates an embedding of the query using the same

embedding model. This embedding is compared against those stored in ChromaDB using

vector similarity metrics (e.g., cosine similarity) to retrieve the most relevant text chunks

from the indexed literature.

This Retrieval-Augmented Generation (RAG) approach supplements the generative model’s

capabilities with real-time access to domain-specific information. Rather than relying solely

on the language model’s internal training data, the system retrieves and incorporates external

evidence to generate accurate, relevant, and up-to-date responses. This drastically reduces the

risk of hallucinations and improves the quality of domain-specific answers, which is

particularly important in archaeology, where precision and source-based interpretation are

critical.

12

2.2.4 Response Generation & User Interface

The final stage of the pipeline involves integrating the retrieved text chunks into a prompt

template using LangChain. This templated prompt is then passed to an AI model, which

generates a context-aware response informed by the retrieved literature. The output is

displayed through a web-based user interface, allowing for quick testing, interaction, and

demonstration of the system's functionality.

This interface enables users, archaeologists, researchers, or students to interact with the AI

system, which responds with detailed information drawn from its research database.

2.3 Retrieval-Augmented Generation (RAG) Framework

The Retrieval-Augmented Generation (RAG) framework is central to the system’s ability to

produce accurate and contextually grounded responses based on archaeological literature.

Unlike traditional generative models that rely solely on pre-trained internal knowledge, RAG

enhances the output quality by incorporating real-time retrieval of relevant external

documents [11]. This hybrid approach ensures that the model is not only generating correct

responses but also ensuring that they are backed by verifiable academic content, thereby

significantly reducing hallucinations and enhancing domain specificity [12].

In this system, when a user submits a query, it is first embedded into a dense vector using the

same embedding model that was used during the document ingestion phase. This query vector

is then used to search ChromaDB, a vector database optimized for sourcing semantic

similarity, thus is able to identify the most relevant chunks of various archaeological texts.

13

These chunks are selected based on vector similarity, meaning the system retrieves passages

that are conceptually aligned with the query, even if the vocabulary or phrasing differs.

Figure 2.3.1 Ingestion and Retrieval with Embeddings [13]

The retrieved text segments are then passed into LangChain, a powerful open-source

framework designed for building language model-powered applications that interact with

external data [14]. LangChain serves as the orchestration layer in this pipeline, dynamically

formatting and constructing the input prompt for the large language model. It integrates the

retrieved chunks alongside the user’s query into a structured, context-rich prompt, ensuring

the model has access to the most relevant background information when generating a

response [15].

LangChain’s modular design also enables flexible experimentation with different retrieval

strategies, prompt templates, and memory mechanisms, allowing our team to iterate and

refine the RAG system efficiently [16]. In this project, LangChain played a key role in

14

maintaining the coherence and traceability of the AI's responses by tightly coupling the

retrieval process with generation, which was essential in achieving our group’s goals.

Figure 2.3.2 Overview of LangChain’s Workflow [15]

Through the integration of the RAG framework, we were able to make significant progress in

bridging the gap between general AI capabilities and the highly specialized needs of

archaeological research. This allows the system to generate responses that are not only

linguistically correct but also firmly rooted in domain-relevant and up-to-date literature.

15

2.4 Document Processing & Embedding

The document processing and embedding stage is an essential step for enabling accurate

semantic search and context-aware generation in our system. This phase transforms raw

archaeological research papers into a structured and searchable vector format suitable for

downstream AI tasks. It comprises three main steps: conversion, splitting, and embedding.

2.4.1 Conversion

Before settling on our current pipeline, we experimented with several approaches to convert

archaeological research PDFs into a format suitable for large language models and

Retrieval-Augmented Generation. Initially, we tested a range of OCR (Optical Character

Recognition) tools, including commercial solutions like Adobe Acrobat's built-in OCR

engine. While these tools were capable of extracting text, they presented several limitations:

the process was slow, often inconsistent across documents with complex formatting or

diagrams, non-automatable for large batches, and costly when scaling beyond a handful of

files. These drawbacks made them unsuitable for a seamless, large-scale pipeline intended to

support efficient querying and knowledge extraction.

To address these issues, the pipeline now starts with the conversion of academic PDF

documents into structured XML using CERMINE, a tool specialized in extracting metadata

and content from scientific literature. CERMINE preserves essential structural components

such as section headers, figure references, bibliographies, and citation markers, which are

critical for parsing scholarly texts in a meaningful way [10].

16

Figure 2.4.1.1 CERMINE Workflow [17]

However, in practice, CERMINE does not always produce clean or usable XML outputs.

Some common issues include garbled characters (e.g., sequences of ???), or structural

inconsistencies, which was often the result from scanning PDFs which contained language

characters which were not supported, or complex formatting, or degraded source quality.

17

Figure 2.4.1.2 Example of Failed XML Conversion

To address this, a custom cleanup program was developed to automatically post-process the

raw XML output. This tool detects and removes corrupted content, normalizes various

structures, thus ensuring consistency in structural tags. It is fully integrated into the document

conversion workflow so that each uploaded PDF passes through CERMINE and then through

the cleanup module before any downstream processing. This not only increases reliability but

also ensures that only high-quality, parseable content enters the semantic pipeline.

To enhance user accessibility, this entire process, from PDF upload to cleaned XML output, is

embedded into the system’s web interface, enabling seamless document conversion with

minimal user intervention.

18

2.4.2 Splitting

Figure 2.4.1. Splitting and Embed Workflow [18]

Once converted, the cleaned text is processed using LangChain’s text splitter, which divides it

into smaller, manageable chunks for embedding [18]. In this implementation, we use

3800-character chunks with a 500-character overlap. The overlap ensures continuity between

chunks, preserving semantic context across boundaries, especially important in dense

academic writing where key information may span multiple paragraphs. However, these

parameters are adjustable and can be fine-tuned based on the specific use case, the model's

context window limitations, or the nature of the source material. LangChain’s flexible

splitting methods (by character, sentence, or token) further allow us to adapt the chunking

strategy to different document types or downstream tasks.

2.4.3 Embedding

Each chunk is then transformed into a high-dimensional vector using OpenAI’s embedding

model [21], which encodes the semantic meaning of the text into a numerical representation.

These vectors are stored in ChromaDB, a vector database [20], which leverages SQL-like

querying for efficient retrieval and management of embeddings. Unlike traditional SQL

19

databases that rely on exact keyword matching or structured joins, vector databases are able

to use approximate nearest neighbor (ANN) searches to compare the semantic meaning of

queries and documents through mathematical proximity.

By storing embeddings in a structured yet flexible format such as this, ChromaDB enables

SQL-compatible operations (such as filtering and indexing) while also supporting vector

similarity searches for high performance. This hybrid approach allows the system to retrieve

the most relevant chunks based on conceptual similarity rather than exact wording, thus

combining the strengths of relational database management with advanced AI-driven search

capabilities.

Figure 2.4.3.1 Vector Database Workflow [23]

2.5 Model Selection

While the Retrieval-Augmented Generation (RAG) framework significantly reduces the

reliance on extensive model pretraining, there remains a need for targeted model adaptation to

ensure outputs are accurate, contextually appropriate, and aligned with our project’s aim.

20

As part of this exploration, we experimented with a range of models to determine their

suitability for this use case. Notably, SciBERT, a BERT model trained on scientific

publications [22], offered strong performance in parsing technical language and was

particularly effective in understanding structured academic texts. Being freely available and

open-source made SciBERT an accessible and cost-efficient option for experimentation.

We also tested Google’s Gemini [24], which showed promising results in reasoning and

general responsiveness across a variety of prompts. Like SciBERT, it was also freely

accessible for development purposes. In contrast, GPT-4 (via OpenAI's API) required

payment based on usage, introducing cost as a factor in sustained development. Despite this,

GPT-4 delivered high-quality generation and strong performance across diverse prompts,

making it a useful baseline for benchmarking.

2.6 Prompt Engineering and Optimization

Prompt engineering refers to the process of designing and refining the inputs (or prompts)

given to a language model in order to guide it toward producing accurate, relevant, and useful

responses [26]. Since large language models like GPT-4o generate outputs based entirely on

the input they receive, the way a prompt is phrased, its structure, tone, and clarity, can

significantly influence the model’s performance [25]. In domain-specific contexts like

archaeology, prompt engineering is especially important to ensure that the AI produces

responses that are not only factually correct but also aligned with scholarly conventions and

expectations.

In our system, LangChain plays a central role as it supports template-based prompting,

enabling consistent formatting across diverse user queries. Simple queries like definitions

21

yield short, direct prompts, while more complex questions trigger more elaborate templates

designed to encourage thoughtful, multi-layered responses.

Additionally, we introduced logic for dynamic prompt adaptation—automatically adjusting

the level of detail, tone, and citation structure based on the nature of the query. These

optimizations were essential to improving both the quality and usability of responses,

especially for archaeologists seeking in-depth answers grounded in specific excavation

reports, journal articles, or technical documentation.

Early in development, we found that standard prompts often led to overly generic or brief

answers. To address this, we fine-tuned our templates to request longer, more detailed

outputs, and made sure that each piece of generated content clearly cited the source document

from which the information was retrieved, improving the academic reliability of the system.

2.7 Infrastructure and Deployment

The system is built on a modular and scalable backend infrastructure, primarily developed in

Python, which integrates several key components: LangChain for prompt orchestration,

ChromaDB as the vector database for semantic retrieval, and OpenAI’s API for access to

advanced language models such as GPT-4o. This backend pipeline enables seamless

interaction between document processing, vector search, and generative response generation,

ensuring fast and accurate performance.

For the user interface (UI), we adopted a two-pronged approach to support both development

testing and potential deployment:

22

● Flask was used to build a lightweight, local web UI. This interface allows researchers

and developers to upload their own PDF files, submit queries, and view results

through a clean, interactive dashboard. Flask’s simplicity and flexibility made it an

ideal choice for prototyping and internal use.

● In parallel, we integrated Gradio [27], a Python library that enables the creation of

browser-based UIs with minimal overhead. Gradio was particularly useful for

temporary server hosting, live demonstrations, and remote user testing, allowing us to

share our system easily with collaborators without requiring full deployment.

Figure 2.7.1 Screenshot of our Gradio Implementation

This dual-UI setup provided flexibility throughout development, where Flask acts as a more

controlled, customizable implementation, while Gradio excels in the quick iterations and

accessibility.

23

3. Implementations and Results

3.1 Outline

This chapter outlines our practical implementation of our Generative AI system and

highlights key outcomes and results derived from its deployment.

3.2 Model Selection Finalisation

The selection of the appropriate language model was a critical step in the development of our

system, as it directly impacts the quality, relevance, and flexibility of the generated responses.

To make an informed choice, we conducted comparative testing across several advanced

models, including Google’s Gemini, SciBERT, and OpenAI’s GPT-4, among others. Each

model was evaluated based on key criteria such as accuracy on domain-specific tasks, ease of

integration with our pipeline, cost, and performance on a small test dataset curated from

archaeological texts and queries.

SciBERT, a transformer model pre-trained on scientific literature, showed promise in its

ability to understand academic language and terminology. It performed reasonably well on

certain retrieval tasks, particularly in extracting factual content from scholarly sources.

Additionally, it was completely open-source and free, making it an attractive option for

cost-sensitive use cases. However, its lack of native integration with modern frameworks like

LangChain, as well as its limited generative capabilities, made it less suitable for our project’s

goals [22].

Google Gemini, another freely available model, offered impressive generative output but

presented difficulties in integration due to API restrictions and limited documentation for

24

customization. While it produced initial satisfactory responses, it also lacked the depth and

flexibility needed to support our full RAG pipeline without significant workarounds.

Ultimately, we selected OpenAI’s GPT-4 as the core model for our system. Despite the

associated cost, GPT-4 consistently outperformed the others in terms of output quality,

robustness, and reliability. Its compatibility with the LangChain framework, seamless API

integration, and capacity to handle complex prompts made it the most practical choice for a

project requiring nuanced and context-rich responses. Furthermore, GPT-4 demonstrated

strong performance on domain-specific tasks such as interpreting archaeological terminology,

generating structured summaries, and maintaining contextual consistency across long-form

queries.

While other models showed potential and remain viable options for future iterations or

budget-conscious applications, GPT-4 provided the best balance of accuracy, usability, and

ecosystem support, making it the ideal choice for the implementation of our project.

3.3 Document Conversion Efficiency

The first stage of our implemented pipeline, document conversion, focused on transforming

unstructured archaeological PDFs into structured XML files using the aforementioned

CERMINE, thus transforming texts to be more suitable for downstream processing.

25

3.3.1 CERMINE’s Strengths

CERMINE demonstrated strong capabilities in handling a wide range of academic document

layouts, from highly formatted journal articles to less structured excavation reports and

textbooks. It effectively preserved critical metadata such as:

● Section headers and titles

● Bibliographic references and citation markers

● Author and publication metadata

Figure 3.3.1 Screenshot of Converted XML file with Metadata

This structured output greatly improved our ability to parse and segment text in a meaningful

way, enabling more precise chunking and retrieval in later stages. Thus, CERMINE was able

to retain a large portion of key metadata elements throughout the conversion process.

3.3.2 Limitations and Cleanup Challenges

Despite these strengths, 34 out of 219 processed documents (roughly 15.5%) required cleanup

due to incomplete or flawed XML output. Common issues included:

26

● Garbled text and replacement characters (e.g., “???”): Often caused by embedded and

unsupported fonts/characters, or scanned image-based PDFs, where character

encoding was not preserved correctly.

● Non-standard formatting: Documents with multi-column layouts, footnotes, sidebars,

or complex table structures frequently caused errors or omissions during extraction.

To mitigate these issues, we implemented an automated cleanup process that is integrated

directly into the conversion pipeline. This algorithm scanned for and removed corrupted

content and handled placeholder characters, as well as fixed and normalised various text

structures caused by different PDF templates. Thus, if the PDF-to-XML conversion process

outputs files containing texts that couldn't be preserved or confidently recovered, the cleanup

program would detect and remove those portions. or, in some cases, discard the document

entirely from the database.

This cleanup step, while essential, introduced a tradeoff, where several documents lost large

portions of content, rendering them partially or entirely unusable by the AI. However, this

step was required, as when working with generative AI, providing no information is

significantly better than providing inaccurate or corrupted information [28]. Some reasons

include the following:

● Hallucination risk: Incorrect or garbled text can lead to misleading outputs from the

language model, potentially fabricating citations or drawing false conclusions [29].

● Loss of trust: In academic and research contexts, factual integrity is extremely

important. A single hallucinated statement based on bad input can undermine the

credibility of the entire system, and subsequent generated results.

● Retrieval quality: Faulty embeddings based on noisy or malformed text reduce the

accuracy of vector-based retrieval, which degrades overall system performance.

27

By filtering out compromised content, we ensured the reliability of our system, thus making

sure that the AI only generated responses grounded in verified, high-quality source materials.

While this meant sacrificing volume, it helped maintain the intellectual rigor and domain

specificity necessary for archaeological research [30].

3.4 Performance Evaluation

To assess the system’s effectiveness, we implemented various evaluation metrics to

objectively measure our implementation’s performance. By applying precision, recall, and F1

score calculation to a custom benchmark set of 125 questions, we designed a process to

evaluate both factual accuracy and the system's ability to avoid hallucinations. We detail how

each metric is calculated, what it measures, and why it matters in the context of

archaeological research. These metrics are complemented by comparisons to a baseline

GPT-4 model without RAG, showing the tangible improvements offered by document

grounding.

Figure 3.4.1 Visualization of Precision and Recall [32]

28

We developed a benchmark set of 125 questions where: 100 questions had answers which

were answerable using the embedded data, and 25 questions that were unanswerable from the

given materials. This was designed to test whether the AI could recognize when it should not

fabricate an answer. The questions were primarily created manually, and answers were

manually verified to ensure fairness and accuracy. This was essential because minor

variations in phrasing could still yield correct answers, thus causing misclassification.

Some examples of the questions are as below:

Answerable Questions Expected Answer Source

During which historical period does

the document provide evidence for the

establishment of the Ultan Qalasi

settlement?

The Sasanian period Alizadeh2011-UltanQal

asi.pdf

Which century is the earliest mention

of the Ghilghilchay defensive long

wall dated to?

7th century AD AlievEtal2006-Ghilghil

chayDefensiveLongWal

l.pdf

Which two Sasanian rulers are

traditionally credited with directing

large-scale projects, including land

reform and irrigation systems,

according to historical accounts?

Kawad I and Husraw I

Anushirwan

Alizadeh2014-Borderla

ndProjectsSasanian.pdf

Figure 3.4.2 Table of Answerable Questions used for Testing

29

These questions are derived from texts that were successfully converted into structured XML

files and embedded into the vector database. Thus, the model should have access to the

relevant source material, meaning that all questions in this set should be answerable based on

the stored content.

Some examples of questions used to test hallucinations are as follows:

Unanswerable Questions Source

What are the four main factors that explain

the Elymaeans' rise as a major power in

Khuzestan?

Alizadeh1985-ElymaeanOccupationofLowe

rKhuzestan.pdf

Which nomadic tribes threatened Parthia

after 129 BC?

Early Parthian coins from Margiana.pdf

Table 3.4.3 Table of Unanswerable Questions used for Testing

These questions were deliberately crafted using archaeological texts that had failed XML

conversion, thus they were not successfully parsed and were excluded from the embedding

process. As a result, the model had no access to the information contained within those

documents in the vector database. This setup ensured that any correct-looking answer would

be the result of hallucination, rather than valid retrieval, allowing us to effectively evaluate

the system’s ability to handle unanswerable queries and to distinguish between retrieved

knowledge and fabricated content.

30

The AI’s performance on this test set was as followed:

● Correctly answered 92 out of 100 valid questions

● Incorrectly answered 6 out of 25 unanswerable ones (i.e., hallucinated 6 responses)

● Missed 8 correct questions

These observations translate to the following classification breakdown:

 Predicted Correct Predicted Incorrect

Actually Correct 92 (True Positives) 8 (False Negatives)

Actually Incorrect 6 (False Positives) 19 (True Negatives)

Table 3.4.4 Classification Breakdown of Testing Results

3.4.1 Accuracy

During the interim reporting phase, we focused primarily on simple information extraction

tasks, such as identifying named entities, dates,etc from archaeological texts. These questions

were drawn from a manually curated set of 75 queries, all of which were intended to be

answerable given the available input, of which, 68 correct answers were generated. This led

to a raw accuracy of approximately 91%.

Using our current test case, with the curated set expanded to 100 answerable queries, the

model returned 92 correct answers, thus resulting in a raw accuracy of 92%. While this marks

only a 1% increase in raw accuracy, the improvement is notable given the larger and more

diverse question set, which introduces greater complexity and reduces variance due to random

chance. Moreover, raw accuracy alone does not account for important factors such as false

positives (i.e., hallucinated answers to unanswerable questions) or false negatives (i.e., missed

correct answers), which can significantly impact the system's reliability in real-world use.

31

These issues are addressed more thoroughly in the precision, recall, and F1 score metrics

discussed below.

3.4.2 Precision

Precision measures how many of the model’s seemingly correct responses were actually

factually accurate. It is calculated as the number of true positives (correct answers) divided by

the total number of positive responses (true positives + false positives). In our test set of 125

questions, 25 were intentionally unanswerable to simulate conditions where a well-grounded

model should refuse to generate speculative or hallucinated answers. Precision is especially

important in academic contexts like archaeology, where the cost of providing incorrect

information can be significant.

Calculating the precision [32] using the aforementioned values:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 = 92

92 + 6 ≈ 93. 88%

Where TP (True Positive) = 92, and FP (False Positive) = 6.

A precision of 93.88% means that nearly all of the AI's responses were accurate. In

archaeological applications, this high precision is crucial to avoid hallucinations, especially

when users might act on these results in academic or field settings.

However, there is room for further optimization. Some false positives stemmed from

hallucinations caused by incorrect or incomplete retrieval, ambiguous phrasing in prompts, or

noisy input data [33]. Improving the conversion process (e.g., cleaner XML generation),

32

refining chunk overlap and formatting, and designing more context-sensitive prompts could

help further reduce these errors and push precision even higher.

3.4.2 Recall

Recall evaluates the model’s ability to retrieve and correctly respond to all valid questions. It

is calculated as the number of true positives divided by the total number of actual answerable

questions (true positives + false negatives). False negatives occur when the model fails to

provide a correct answer to a question it should have been able to answer, potentially due to

context misalignment, misinterpretation, or insufficient retrieval coverage.

Calculating the recall [32] using the stored values:

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 = 92

92 + 8 = 92%

Where FN (False Negatives) = 8, as (100 total valid questions – 92 correctly answered = 8)

This recall value indicates the model is consistently able to find the correct information when

it exists. However, recall is sensitive to retrieval quality, and if the right chunk wasn’t

retrieved (due to limitations in embedding similarity, window sizes, chunk boundaries, etc),

the model is unlikely to answer correctly, even if the underlying LLM has the capacity.

3.4.3 F1-Score

The F1-score provides a balanced measure between precision and recall [34], especially

useful in applications like ours where both false positives (hallucinations) and false negatives

33

(missed answers) are problematic. It is the harmonic mean of precision and recall, calculated

as followed:

 𝐹
1
 𝑆𝑐𝑜𝑟𝑒 = 2

1
𝑅𝑒𝑐𝑎𝑙𝑙 + 1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 = 2 × 93.88 × 92
93.88 + 92 ≈ 92. 93

This F1 score demonstrates strong overall robustness, balancing the model’s ability to answer

correctly and its caution in avoiding hallucinations, though some loss occurred, perhaps due

to missed context or chunk mismatches, highlighting areas for further refinement in chunk

overlap logic, source formatting, and prompt improvements.

The reason the F1 score is particularly useful in our case is because it takes both false

positives (incorrect answers) and false negatives (missed correct answers) into account. This

is significant when dealing with domain-specific tasks, like archaeological research, where a

single incorrect or missed answer can significantly affect the model's usefulness in practice.

Overall, the F1 score provides a more balanced view of model performance compared to

accuracy alone. While accuracy can be skewed by imbalances in the number of answerable

and unanswerable questions, the F1 score mitigates this bias by considering how well the

model balances both precision and recall.

3.4.4 Qualitative Analysis

In addition to quantitative metrics, we conducted a qualitative review of the model’s

responses. In several cases, the answers were holistically correct, even if they missed specific

34

details or phrased the information differently than expected. These types of responses suggest

that while the core understanding is overall accurate, the model may occasionally sometimes

overlook certain things, such as complex terminology or multi-part reasoning.

An example of a long answer question is as follows:

Long Answer Questions Answer should contain the
following:

Source

The author mentions that

Sasanian society had multiple

language groups and that

surviving texts are mainly

male-centric and religious.

What is one challenge this

presents for understanding

Sasanian society?

It can be difficult to fully

understand the history and

culture of non-Iranian

language groups, and the

perspectives of women and the

poor may be marginalized.

(Both points can be considered

valid answers).

Daryaee2009-SasanianPe

rsiaRiseFallEmpire.pdf

Table 3.4.4.1 Long Answer Question Example

Where the result of the AI would be read to assess whether the overall gist and intent of the

answer aligned with the expected response. However, this method is inherently subjective and

lacks the strict reproducibility of quantitative metrics.

We acknowledge that while this has assisted us in identifying potential strengths and

weaknesses in contextual understanding, it does not provide a consistent or scalable

framework for benchmarking. Therefore, establishing more standardized qualitative

evaluation methods, potentially with rubric-based scoring or expert reviews, is a key

consideration for future development, as outlined in the next chapter describing future works.

35

3.4.5 Comparison to Baseline GPT-4

For comparison, we also tested the same GPT-4 model without our RAG-based

enhancements. This version of the model, which relied solely on its pre-trained internal

knowledge, produced incomplete or factually incorrect answers, particularly on

domain-specific archaeological queries. The absence of direct access to reference material

meant that the model would often hallucinate inaccurate information.

Figure 3.4.5.1 Incorrect Output by Baseline GPT-4

In contrast, our full pipeline showed improvements regarding such issues. When asked the

same question across both versions, the RAG-enabled system was able to pull in the correct

contextual chunks and provided answers aligned with the original source material. This would

indicate a reduction in hallucinations and an increase in both the reliability and explainability

of responses.

Figure 3.4.5.2 Correct output with our RAG-enabled system

36

3.5 User Interface

For the user interface (UI) of our AI application, we adopted a Flask-based approach to

support local development, researcher interaction, and early-stage deployment. Flask, being a

lightweight and highly flexible Python web framework, was chosen for its ease of integration

with the rest of our Python-based backend, including LangChain, ChromaDB, and OpenAI’s

API. Its modularity also makes it ideal for future integration with production-grade servers

and authentication systems.

As mentioned, we implemented a Gradio interface, a browser-based UI toolkit that allowed us

to share the system for remote access, live demonstrations, and collaborative feedback

sessions. Gradio requires minimal configuration and works seamlessly with our Python

backend, making it ideal for quick deployments on temporary servers or for showcasing

functionality without full-scale deployment.

3.5.1 Flask-Based Local Web UI

For local use, we implemented a clean, lightweight web interface using Flask. The design of

the Flask UI emphasizes usability and intuitiveness, especially for non-technical users such as

archaeologists or research assistants.

● On the left-hand side of the page, users can upload PDF or XML files directly into the

system. This file uploader is integrated with our backend pipeline, triggering the

CERMINE conversion and cleanup process upon submission automatically.

● On the right-hand side, a chat-like query interface allows users to enter natural

language questions, which are then processed via the RAG pipeline.

37

Figure 3.5.1.1 Screenshot of Web Interface

This layout would hopefully support a smooth, guided workflow: upload documents, ask

questions, receive answers—with no need for separate scripts or command-line tools. Flask’s

lightweight nature also makes it easily integrated with other server systems, supporting future

deployment in cloud or academic environments.

Figure 3.5.1.2 Screenshot of Application in Use

38

4. Future Works

In this section, we outlined various key areas for further development and improvement that

could be made regarding our project’s implementation.

4.1 Web Interface and Scalable Deployment

One of the major goals for future work is to transition our current local web based

implementation towards a scalable server system that would significantly improve the

accessibility and usability of the AI tool for a wider range of archaeologists.

By supporting a larger number of concurrent users, this system would allow archaeologists

from various institutions and fields to upload their research, query the AI, and receive

real-time, contextually grounded responses. This infrastructure would enable seamless

collaboration, allowing researchers to test the model with their specific datasets and refine the

AI’s capabilities based on the increasing pool of resources uploaded by users.

Furthermore, by allowing archaeologists and researchers to directly interact with our

application, it would assist in driving further improvements tailored to the needs of the

archaeological community, and would directly support the next phase of work, where we aim

to expand collaboration further and engage with experts in refining the system's performance.

4.2 Collaboration with Archaeologists

Engaging and collaborating with experts in the field of archaeology would assist us in

performing long-form qualitative evaluations, refining question sets, and identifying gaps in

39

contextual interpretation, thus improving the AI’s accuracy and relevance. Through direct

feedback from archaeologists, we can enhance the model's ability to handle complex,

long-form queries, improve its comprehension of archaeological terminology, and address

any overlooked nuances in field-specific practices. Thus, it would allow for targeted

adjustments and fine-tuning to improve its usefulness for archaeological research.

4.3 Enhancing Prompt Engineering

In the future, perhaps utilising the information received in the aforementioned archaeologists’

feedback, improvements to our prompt templates could be made to better suit the needs of

real-world archaeological research. This may involve tailoring the structure and tone of

prompts to reflect the way archaeologists frame inquiries, incorporating domain-specific

terminology, or adjusting the level of detail requested to align with academic expectations.

4.4 Expanding the Dataset

Expanding the dataset could also further enhance the AI’s performance. Currently, the model

operates on a relatively limited collection of texts (Approximately 217), which can cause

constraints in its ability to generate comprehensive responses, particularly for niche or highly

specialized queries.

By incorporating a broader dataset of archaeological material, we can significantly increase

the breadth and depth of the knowledge base the AI can draw upon. This would make the

system more representative of the many subfields and regional variations within archaeology.

This could be aided by the aforementioned scalable deployment, as that would allow

40

archaeologists and researchers to upload their own curated datasets to the system. This

collaborative model would not only enrich the existing knowledge base but also foster a

feedback loop where the AI becomes increasingly tailored to the specific needs and interests

of its users.

4.5 Improving Document Conversion and Cleanup

Despite the improvements in the document conversion pipeline using CERMINE, there are

still challenges associated with extracting usable data from complex or poorly structured PDF

documents. Refinements to the conversion and cleanup process could be made, such as

recovering more usable data from difficult layouts, such as scanned documents.

Other PDF-to-XML conversion libraries and tools may be developed and implemented to

achieve this, or alternative preprocessing methods could be explored to improve data quality

and reduce the need for manual cleanup.

41

5. Conclusion

This project explored the development of a Retrieval-Augmented Generation (RAG) system

tailored for archaeological research, with the goal of enhancing access to and interpretation of

complex academic literature. By combining tools like CERMINE for document conversion,

LangChain for prompt orchestration, ChromaDB for vector-based retrieval, and OpenAI’s

GPT-4 for generation, we built a prototype capable of delivering contextually grounded and

accurate responses to answer archaeological queries.

The system demonstrated clear improvements over a standard generative model, particularly

in reducing hallucinations and improving specificity. Through various metrics, we measured

notable improvements in regards to the effectiveness of our approach. Our pipeline was

further supported by a lightweight and user-intuitive web interface built with Flask, enabling

easy document uploads and query interactions.

However, there are limitations and improvements to be made. Challenges in document

conversion accuracy, prompt robustness, and database coverage all affect the system’s

performance. Addressing these issues will require further optimizations and improvements,

alongside the help and collaboration of experts in the field of archaeology.

If these improvements are made, this AI model could become a useful tool for archaeologists,

supporting their research and hopefully making their work more efficient and accessible. With

continued development, the system has the potential to integrate seamlessly into existing

research workflows and contribute meaningfully to archaeological research, especially in

light of the growing adoption of generative AI across academic and scientific fields.

42

Bibliography

[1] C. Labba, A. Alcouffe, E. Crubézy, and A. Boyer, “IArch: An AI Tool for Digging Deeper into

Archaeological Data,” 2023 IEEE 35th International Conference on Tools With Artificial Intelligence

(ICTAI), pp. 22–29, Nov. 2023, doi: 10.1109/ictai59109.2023.00012.

[2] “AI in Archaeology Applications | Restackio.”

https://www.restack.io/p/ai-in-archaeology-answer-historical-analysis-cat-ai

[3] M. Tenzer, G. Pistilli, A. Bransden, and A. Shenfield, “Debating AI in Archaeology: applications,

implications, and ethical considerations,” Internet Archaeology, no. 67, Feb. 2024, doi:

10.11141/ia.67.8.

[4] M. Pasikowska-Schnass and Y.-S. Lim, “Artificial intelligence in the context of cultural heritage

and museums,” European Parliamentary Research Service, May 2023, [Online]. Available:

https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/747120/EPRS_BRI(2023)747120_EN.pd

f

[5] M. Altaweel, A. Khelifi, and M. H. Zafar, “Using generative AI for reconstructing cultural

artifacts: Examples using Roman coins,” Journal of Computer Applications in Archaeology, vol. 7, no.

1, pp. 301–315, Jan. 2024, doi: 10.5334/jcaa.146.

[6] T. But, “The Latest AI Innovations in Archaeology,” Historica, Sep. 02, 2024.

https://www.historica.org/blog/the-latest-ai-innovations-in-archaeology

[7] A. O. Historian, “Internet Archaeology - a free online Archaeology journal,” Seax Education, Jun.

10, 2021.

https://www.anoxfordhistorian.com/post/internet-archaeology-a-free-online-archaeology-journal

43

[8] B. Marwick, “Open Access to Publications to Expand Participation in Archaeology,” Norwegian

Archaeological Review, Oct. 2020, doi: 10.1080/00293652.2020.1837233.

[9] S. Guizeni and S. Guizeni, “Exploring the usage constraints of GPT-4: An In-Depth Examination

of Operational Limits,” Seifeur Guizeni - AI/ML Engineer & SEO Consultant, Jul. 11, 2024.

https://seifeur.com/gpt-4o-message-input-limit/

[10] “Content ExtRactor and MINER - User console.” http://cermine.ceon.pl/index.html

[11] “A Retrieval-Augmented Generation Framework for Academic Literature Navigation in Data

Science.” https://arxiv.org/html/2412.15404v1

[12] F. Zhang et al., “DH-RAG: A Dynamic Historical Context-Powered Retrieval-Augmented

Generation Method for Multi-Turn Dialogue,” arXiv.org, Feb. 19, 2025.

https://arxiv.org/abs/2502.13847

[13] M. Ozkaya, “The RAG Architecture: Ingestion and Retrieval with Embeddings and Vector

Search,” Medium, Dec. 04, 2024. [Online]. Available:

https://mehmetozkaya.medium.com/the-rag-architecture-ingestion-and-retrieval-with-embeddings-and

-vector-search-9bb86adb0ff5

[14] “Introduction | 🔗 LangChain.” https://python.langchain.com/docs/introduction/

[15] “What is LangChain? - LangChain Explained - AWS,” Amazon Web Services, Inc.

https://aws.amazon.com/what-is/langchain/

44

[16] “Build a Retrieval Augmented Generation (RAG) App: Part 1 | 🔗 LangChain.”

https://python.langchain.com/docs/tutorials/rag/

[17] “Content ExtRactor and MINEr - about.” http://cermine.ceon.pl/about.html

[18] “Text Splitters | 🔗 LangChain.”

https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/

[19] S. Y. Kim, W. K. Lee, S. J. Jee, and S. Y. Sohn, “Discovering AI adoption patterns from big

academic graph data,” Scientometrics, Jan. 2025, doi: 10.1007/s11192-024-05228-4.

[20] “Chroma Docs,” Chroma Docs. https://docs.trychroma.com/docs/overview/introduction

[21] “Vector embeddings,” OpenAI. https://platform.openai.com/docs/guides/embeddings

[22] Allenai, “GitHub - allenai/scibert: A BERT model for scientific text.,” GitHub.

https://github.com/allenai/scibert

[23] “What is a Vector Database? | A Comprehensive Vector Database Guide,” Elastic.

https://www.elastic.co/what-is/vector-database

[24] “Gemini,” Google DeepMind, Apr. 17, 2025. https://deepmind.google/technologies/gemini/

[25] “Text generation and prompting,” OpenAI.

https://platform.openai.com/docs/guides/text?api-mode=responses

[26] Wikipedia contributors, “Prompt engineering,” Wikipedia, Apr. 17, 2025.

https://en.wikipedia.org/wiki/Prompt_engineering

45

https://www.scribbr.com/citation/generator/folders/6nBlL0cptQPtNo6ZHU9Xkn/lists/7znPSnoUnzHUoDsVl3h7kI/sources/7DkV4utrU0gWRalhRFzeqF/

[27] G. Team, “Getting started with the Python client.”

https://www.gradio.app/guides/getting-started-with-the-python-client

[28] OpenAI et al., “GPT-4 Technical Report,” arXiv.org, Mar. 15, 2023.

https://arxiv.org/abs/2303.08774

[29] Z. Ji et al., “Survey of Hallucination in Natural Language Generation,” ACM Computing Surveys,

vol. 55, no. 12, pp. 1–38, Nov. 2022, doi: 10.1145/3571730.

[30] L. Casini, N. Marchetti, A. Montanucci, V. Orrù, and M. Roccetti, “A human–AI collaboration

workflow for archaeological sites detection,” Scientific Reports, vol. 13, no. 1, May 2023, doi:

10.1038/s41598-023-36015-5.

[31] J. Zimmer-Dauphinee, P. VanValkenburgh, and S. A. Wernke, “Eyes of the machine: AI-assisted

satellite archaeological survey in the Andes,” Antiquity, vol. 98, no. 397, pp. 245–259, Dec. 2023, doi:

10.15184/aqy.2023.175.

[32] Wikipedia contributors, “Precision and recall,” Wikipedia, Mar. 21, 2025.

https://en.wikipedia.org/wiki/Precision_and_recall

[33] The Learning Agency, “Improving AI-Generated Responses: Techniques for reducing

Hallucinations - The Learning Agency,” The Learning Agency, Jul. 16, 2024.

https://the-learning-agency.com/the-cutting-ed/article/hallucination-techniques/

46

[34] Wikipedia contributors, “F-Score,” Wikipedia, Apr. 14, 2025.

https://en.wikipedia.org/wiki/F-score

47

	COMP4801 Final Year Project
	
	Final Report
	Generative AI for Researching Archaeology
	Abstract
	Acknowledgements
	
	Table of Contents:
	List of Figures/Tables
	1. Introduction
	1.1 Project Background
	1.2 Current Situation and Limitations
	
	
	1.3 Project Objective

	2. Methodology
	2.1 Overview
	2.2 System Architecture
	Figure 2.2.1 System Architecture of the Project
	
	2.2.1 Document Conversion & Structuring
	2.2.2 Text Processing & Embedding
	2.2.3 Retrieval-Augmented Generation
	2.2.4 Response Generation & User Interface

	2.3 Retrieval-Augmented Generation (RAG) Framework
	Figure 2.3.1 Ingestion and Retrieval with Embeddings [13]
	Figure 2.3.2 Overview of LangChain’s Workflow [15]

	2.4 Document Processing & Embedding
	
	2.4.1 Conversion
	Figure 2.4.1.1 CERMINE Workflow [17]
	Figure 2.4.1.2 Example of Failed XML Conversion

	2.4.2 Splitting
	Figure 2.4.1. Splitting and Embed Workflow [18]

	2.4.3 Embedding
	Figure 2.4.3.1 Vector Database Workflow [23]

	2.5 Model Selection
	2.6 Prompt Engineering and Optimization
	2.7 Infrastructure and Deployment
	Figure 2.7.1 Screenshot of our Gradio Implementation

	3. Implementations and Results
	3.1 Outline
	3.2 Model Selection Finalisation
	3.3 Document Conversion Efficiency
	3.3.1 CERMINE’s Strengths
	Figure 3.3.1 Screenshot of Converted XML file with Metadata

	
	3.3.2 Limitations and Cleanup Challenges

	3.4 Performance Evaluation
	Figure 3.4.1 Visualization of Precision and Recall [32]
	Figure 3.4.2 Table of Answerable Questions used for Testing
	Table 3.4.3 Table of Unanswerable Questions used for Testing
	Table 3.4.4 Classification Breakdown of Testing Results
	3.4.1 Accuracy
	3.4.2 Precision
	3.4.2 Recall
	3.4.3 F1-Score
	
	3.4.4 Qualitative Analysis
	Table 3.4.4.1 Long Answer Question Example

	3.4.5 Comparison to Baseline GPT-4
	Figure 3.4.5.1 Incorrect Output by Baseline GPT-4
	
	
	
	Figure 3.4.5.2 Correct output with our RAG-enabled system

	
	3.5 User Interface
	3.5.1 Flask-Based Local Web UI
	Figure 3.5.1.1 Screenshot of Web Interface
	Figure 3.5.1.2 Screenshot of Application in Use

	4. Future Works
	4.1 Web Interface and Scalable Deployment
	
	4.2 Collaboration with Archaeologists
	4.3 Enhancing Prompt Engineering
	4.4 Expanding the Dataset
	
	4.5 Improving Document Conversion and Cleanup

	5. Conclusion
	Bibliography

