

THE UNIVERSITY OF HONG KONG

 COMP4801 - Final Year Project

Final Report

Changjin Lee (3035435840)

TradeInbox: LLM-based Financial News Notification System

20 April 2025

Abstract

Today’s volatile financial market and the overwhelming volume of data make it

challenging for individual investors to receive timely, relevant updates on their stock

portfolios, as manually sifting through vast amounts of information may lead to missed

opportunities or losses. The project aims to tackle these challenges by processing

user-provided stock information, enhancing it with a keyword generator LLM, and utilizing

embedding search to filter relevant news. The summary generator LLM will produce

personalized news summaries, delivered in real-time, empowering investors to make more

informed investment decisions. Initial results include the implementation of the keyword

generator LLM that could improve article relevance filtering by producing pertinent

keywords and sentences that are likely to appear in financial news relevant to user inputs. By

providing timely summaries, the system aims to help investors respond swiftly to volatile

market events. The immediate next step is front-end development using React to build an

interactive user interface for the system.

i

Acknowledgments

We extend our gratitude to Dr. Chow Ka Ho, our final-year project advisor, for his

exceptional guidance and continuous support throughout the project. His insightful feedback

and mentorship have been pivotal in refining our project and enriching our learning

experience. We also want to recognize the contributions of our dedicated team members,

whose collaboration and commitment were instrumental in the project’s success. A special

thanks goes to Mr. Gagandeep Singh, our CAES lecturer, for his invaluable lessons on

technical writing, which significantly improved the quality of our documentation. Finally, we

are grateful to the faculty, staff, and colleagues at The University of Hong Kong, as well as

friends who generously shared their insights and feedback, for their support and

encouragement along the way.

ii

Table of Contents

1. Introduction.. 1

2. Methodology... 2

 2.1 Data Source and APIs.. 2

 2.2 System Architecture... 3

 2.3 Authentication with JSON Web Token (JWT)...5

 2.4 Development Tools and Infrastructure... 6

 2.5 Features and UI & UX... 7

 2.6 Embedding Search & Keyword Generator LLM... 9

 2.7 Polling Agent..12

 2.8 Feedback Loop... 14

 2.9 Flexible LLM Prompt Engineering Code Design.. 16

 2.10 Stock Analysis Report..20

 2.11 Stock Analysis Report Notification..28

3. Results and Discussion... 28

 3.1 Example Keyword Generator LLM... 28

 3.2 Stock Dashboard UI... 32

 3.2 Stock Analysis Report UI...33

4. Difficulties and Possible Solutions.. 34

5. Conclusion...34

iii

List of Figures

Figure 1. System architecture.. 3

Figure 2. Sign-In Page...5

Figure 3. Development Tools and Infrastructure...6

Figure 4. Stock Input Page.. 7

Figure 5. Stock Analysis Report Page...8

Figure 6. Embedding Search Result 1... 11

Figure 7. Embedding Search Result 2... 11

Figure 8. Polling Agent... 12

Figure 9. Polling Agent Asynchronous Processing...13

Figure 10. Feedback Loop Page.. 14

Figure 11. LLM Client ChatMessage Implementation..16

Figure 12. LLM Client Implementation.. 17

Figure 13. Prompt Storage Example... 18

Figure 14. Prompt Management Utility Class...19

Figure 15. Prompt Executor Example... 19

Figure 16. News Summary Prompt... 20

Figure 17. Key Metrics Prompt... 22

Figure 18. Sentiment Analysis Prompt..24

Figure 19. Stock Analysis Prompt...27

Figure 20. Discord Stock Analysis Report Notification..28

Figure 21. Example Keyword Generator LLM Output... 30

Figure 22. Stock Dashboard Page... 32

Figure 23. Stock Analysis Report Page...33

iv

List of Tables

Table 1. Keyword Generator LLM Result... 31

v

1. Introduction

In today's highly dynamic financial markets, access to relevant and up-to-date

information is critical for informed decision-making. A prime example of this is the collapse

of FTX. On 8 November 2022, after news articles were published that FTX announced to halt

all withdrawals, Bitcoin's price plummeted from 20,600 USD to 15,883 USD within just a

few days [1]. This incident demonstrates the importance of promptly reacting to market

events to minimize losses.

However, individual traders often struggle to navigate the overwhelming volume and

pace of financial news. With thousands of articles published daily across various platforms at

unpredictable times, identifying relevant information quickly becomes a significant

challenge. A web traffic study by FinText shows that readers spend an average of 30 to 60

seconds per page on financial articles and read 3 to 4 articles daily [2], underscoring the

difficulty of navigating news with limited time and resources. While platforms like Yahoo

Finance provide real-time news alerts, they lack personalized summaries and stock impact

analysis tailored to user custom inputs [3], requiring traders to manually analyze articles for

relevance and potential impact—a time-intensive process.

The project ‘LLM-based real-time and personalized financial news notification

system’ is a web-based system aiming to tackle this challenge by delivering real-time

summary and impact analysis of news articles relevant to user’s stock portfolio by leveraging

Large Language Models (LLM), focusing specifically on the USA stock market. Recent

achievements in LLMs have enabled new ways of processing text data with its capability to

understand unstructured natural language texts and produce highly customizable output

utilizing prompt engineering. Within the project, LLMs specifically fine-tuned for financial

news analysis, combined with user input such as stock names or custom keywords, allow the

1

system to filter and select only the most relevant news articles. The system then generates

article summaries and stock impact analyses, delivered to users through various SNS

channels, including Whatsapp and Discord, to provide convenient access to critical market

information. To ensure the most up-to-date information, multiple agents continuously poll

target finance APIs and news websites at short intervals, extensively utilizing multi-threading

and asynchronous message queues to minimize latency and ensure real-time delivery. The

system also incorporates a dashboard user interface displaying stock graphs alongside the

history of the generated news article summaries and impact analyses to provide users with an

intuitive view of investment trends.

The project’s objective is to help investors make more informed investment decisions

by providing tailored news summaries related to their stock portfolios, ensuring they can stay

informed without being overwhelmed by manually exploring vast amounts of information.

Also, the project aims to enable investors to act promptly on potential investment

opportunities or minimize losses through a real-time notification system.

The remainder of the report is structured as follows. First, Chapter 2 discusses the

details of the methodologies adopted throughout the project. Next, Chapter 3 presents the key

achievements and the potential future improvements for the project. Lastly, Chapter 4

provides a summary and conclusion of the work conducted.

2. Methodology

This section introduces the methodologies utilized in the project. It details the data

source and APIs, system architecture, and various system components to achieve

personalization and real-time news summary and analysis delivery.

2

2.1 Data Source and APIs

The project will utilize Refinitiv API [4] to retrieve stock information, including stock

name, industry classification, and relevant keywords and tags describing the company and its

activities. The decisive advantage of Refinitiv API, compared to other finance information

providers, is that it provides endpoints to retrieve real-time news updates along with

headlines and full content. A custom web scraper will be implemented to poll extra sources,

such as the Yahoo Finance website as a supplementary data source, as Refinitiv API does not

fully cover every financial news website.

2.2 System Architecture

The system will have various components (see Figure 1 below) to construct a

personalized and real-time financial news notification system.

3

Figure 1. System Architecture - The system generates the embeddings from the user-provided

stock information and stores them in the vector database. A polling agent extracts news

articles, and LLMs analyze them to create personalized insights, delivering real-time updates

to users through SNS channels.

The system’s personalization begins with user input processing. Upon registration,

users can provide stock names or custom keywords such as ‘beverage industry’ or ‘GenAI,’

which will be used for personalized news article selection. If stock names are provided, the

system will utilize Refinitiv API to fetch stock information, including industry classification

and keywords. Once the system has stock names or keywords, the Keyword Generator LLM

will expand the data by generating additional related keywords and example sentences that

reflect potential news narratives. The generated keywords and sentences will then be

converted into embeddings and saved into a vector database. The vector database will be

utilized for efficient embedding search against news articles to filter only the relevant ones.

To achieve real-time delivery, a polling agent, a background batch process running

asynchronously from the main backend, will continuously poll Refinitiv API and financial

news websites at short intervals (about 10 seconds) to extract news articles. The Document

Analyzer will compare the embeddings of each article with the stored embeddings of

user-specific keywords and example sentences. This process selects only the users whose

stock data is relevant to the extracted article. Finally, the fine-tuned Stock Analyzer LLM will

generate a summary and user-specific stock impact analysis and deliver them to users through

SNS channels.

4

2.3 Authentication with JSON Web Token (JWT)

Figure 2. Sign-In Page

Strong authentication is crucial, especially because the service handles user

personalized financial data. TradeInbox leverages JWT(JSON Web Token) as a primary

authentication mechanism. JWT acts as a stateless access token consisting of a header,

payload, and signature. A user signs in with a username and password, and the server

responds with a JWT signed with the secret key. Then, in subsequent requests, the user

attaches the access token to the ‘Authorization’ HTTP header for verification.

Our team chose JWT primarily due to its stateless characteristic in a distributed and

scaled-out environment. The server is expected to adopt horizontal scale-out as the user

traffic increases, and JWT allows each server to share only the secret key to seamlessly scale

5

out without maintaining a separate session storage such as Redis. Moreover, JWT token is

self-contained, meaning it contains all necessary information about the user (i.e., user ID),

reducing additional database queries.

2.4 Development Tools and Infrastructure

Figure 3. Development Tools and Infrastructure

 The primary backend system of the project is implemented using FastAPI. FastAPI is

a modern back-end framework written in Python, offering high performance and scalability.

FastAPI is built on ASGI(Asynchronous Server Gateway Interface operating on a

single-threaded model, providing high performance, especially in a network I/O heavy

environment. This ability significantly saves resources and boosts the overall performance of

the app, as TradeInbox features heavily rely on external API providers such as OpenAI and

Zilliz Cloud. Another consideration was the language compatibility with libraries. The

backend system heavily utilizes LLM APIs and libraries such as OpenAI, LangChain, and

Milvus, and most of them best support Python as their primary SDK language.

The project’s infrastructure will be hosted on Amazon Web Services (AWS) for its

first-class scalability and reliability. Moreover, Milvus will be used as the vector database due

to its superior performance metrics. It provides the highest 2,406 queries-per-second rates and

offers the lowest computation latency(1 ms), outperforming alternatives such as Pinecone and

Qdrant [6].

6

The front-end will be developed with React, chosen for its efficiency, reusability of

components, and strong ecosystem for building dynamic web applications. React also

provides a powerful component-based architecture, breaking down complex UIs into reusable

components.

2.5 Features and UI & UX

 This section provides an overview of the project features, user journey flow, as well as

the descriptions of the user interface (UI).

2.5.1 Multi-Stock Input

Figure 4. Stock Input Page

Upon a successful sign-in, user could provide a list of stocks to track. TradeInbox

maintains a database of 4793 publicly-listed companies in NASDAQ. To simplify the search

process, user can search by either a stock name or a stock ticker.

7

2.5.2 Dashboard

 After successfully providing stocks, the user will be directed to the main dashboard,

where each stock will have its own dedicated dashboard. The left portion of the dashboard

shows a overview of stock information including the exchange, industry sector, current stock

price, as well as previous close price. Additionally, the dashboard displays the past month’s

price history as well as the trading volume history.

 The left side of the dashboard provides a personalized news curation. Once the user

has provided the stocks, the system automatically scrapes and collects the news articles

relevant to the stock and curate them with further analysis. Since there might be an excessive

amount of the captured news articles, the app provides the ‘Quick Summary’ where the user

can easily glimpse at what positive and negative events have happened recently related to the

stock. The curation also provides a list of the captured news articles, offering the title, a short

summary, and the sentiment analysis result such as ‘Positive’, ‘Negative’, or ‘Strong

Positive’. To allow users to quickly identify the strong indicators, the news articles with a

sentiment ‘Strong Positive’ and ‘Strong Negative’ are highlighted in background.

2.5.3 Stock Impact Analysis Report

8

Figure 5. Stock Analysis Report Page

 When clicking on a news article, the system shows a detailed stock analysis report

including a summary, key metrics extracted from the article, sentiment analysis, and the stock

impact analysis predicting how the article is likely to impact the stock price.

2.6 Embedding Search & Keyword Generator LLM

 Embeddings are numerical representations of words or sentences in vector space,

capturing the semantic relationships between text data [5]. Due to their ability to distinguish

semantic nuances, embeddings are frequently utilized in embedding search, also known as

semantic search, to determine the similarity between sentences or whole documents.

 Upon receiving the stock from the user, the system will generate the embedding

vectors from the stock name and store them in the Milvus vector database. Meanwhile, the

polling agent continuously scrapes the news articles and converts the news title and the body

into vector embeddings and performs embedding search against the user-provided stock

embedding to calculate the cosine similarity score. If the similarity score exceeds a

pre-defined threshold, then the article is considered a match and stored in the database. The

cosine similarity score threshold was set to 0.4 in the system based on the experiments. The

news articles that clearly have no relation to the stock tend to show an extremely low

similarity score. For example, the news article ‘Spurs take on the Grizzlies on 3-game losing

streak’ showed the score of 0.016 when comparing against the embedding of ‘NVIDIA

Corporation’. Also, the system converts the whole news article body into a single embedding.

Hence, our team assumed that due to the lengthy text, detailed semantics are diluted, resulting

in a relatively lower similarity score. On the other hand, relevant articles such as ‘Nasdaq

Sell-Off: After Losing Nearly $800 Billion in Market Cap, Is Nvidia Stock a Buy Anymore?’

consistently show above 0.4 similarity score.

9

 Directly converting the stock name, such as ‘Nvidia’, into the vector embedding

might work in scenarios where the stock name is explicitly stated in the news content.

However, it suffers when a news article is indirectly related to the given stock, where neither

the news title nor the content explicitly contains the stock name. An example is the news

where the title is ‘Arm Holdings Reportedly Aims To Capture Half of the Data Center CPU

Market in 2025 - Retail’s Divided As Stock Falls’ and the content doesn’t directly include the

word ‘Nvidia.’ This article is reasonably related to Nvidia, as it describes that Arm aims to

capture a significant share of the data center CPU market, particularly in the AI sector, which

could pose a threat to Nvidia. However, simply calculating the similarity score from the stock

name’s embedding gives only 0.26.

To tackle this challenge of capturing indirectly related news articles, the Keyword

Generator LLM is devised. The Keyword Generator LLM will expand the user input to a

richer dataset for a more robust embedding search. For instance, if a user is interested in

Coca-Cola, the LLM might generate additional phrases like ‘beverage industry trends’ or ‘the

introduction of sugar taxes has led to a decrease in demand for traditional sugary beverages,’

enabling a more thorough analysis.

 Integrating with this approach, the system generates 10 example keywords from the

user-provided stock name. The system then generates a vector embedding for each of the

keywords as well as from the stock name itself, resulting in a total of 11 vector embeddings

stored in the vector database. When the polling agent captures a fresh news article, the

embedding search is performed against each of the stored keywords. Next, it will select the

one with the maximum cosine similarity score and determine whether the article is relevant if

the maximum score exceeds the threshold. This approach allows the system to obtain a

diverse set of perspectives to determine relevancy. If the news article explicitly contains the

10

stock name, then the vector embedding extracted from the stock name is likely to be matched,

while the indirectly related news articles will be captured by those of the generated keywords.

Figure 6. Embedding Search Result 1

Figure 7. Embedding Search Result 2

 The following experiments demonstrate the effectiveness of this strategy. With the

‘Nvidia’ as user input, the system generated keywords such as ‘graphics processing units’,

‘AI technology trends’, ‘gaming industry growth’, ‘data center demand’, and ‘major

competitor AMD’. The cosine similarity score between the stock name ‘Nvidia’ itself and

the news article ‘Arm Holdings Reportedly Aims To Capture Half of the Data Center CPU

Market in 2025 - Retail’s Divided As Stock Falls’ was 0.26, failing to exceed the threshold of

11

0.4. On the other hand, one of the generated keywords, ‘AI technology trends,’ resulted in

0.44, which exceeds the threshold.

 On the other hand, the news article ‘Nasdaq Sell-Off: After Losing Nearly $800

Billion in Market Cap, Is Nvidia Stock a Buy Anymore?’ is matched with the stock name

‘Nvidia’, showing a 0.52 similarity score. The experiments show that the system can capture

both directly and indirectly related news articles, backed by the diverse generated keywords.

2.7 Polling Agent

Figure 8. Polling Agent

The polling agent continuously polls every 10 minutes from the news API to fetch

fresh news articles. The polling agent runs on the same backend server and is implemented

using the APScheduler library’s BackgroundScheduler to implement recurring tasks without

blocking the main thread. After the polling agent receives a news article, the agent performs a

12

series of tasks, including the embedding search, news summary generation, sentiment

analysis, and stock impact analysis.

However, the above tasks leverage LLM APIs, which involve heavy network I/O

operations. Unlike traditional APIs, whose latency usually spans from 50ms ~ 500ms, the

external LLM APIs such as OpenAI take a considerable amount of time, often surpassing

5~10 seconds. If those tasks are executed serially, then the total latency of each news

processing is expected to take more than 30 seconds, which is too long for real-time

processing and unscalable when heavy traffic comes. To optimize, the system leverages

Python’s asynchronous programming capabilities through asyncio and aiohttp to enable

concurrent processing of those heavy network I/O bound tasks. The below is a brief summary

of the polling codebase.

Figure 9. Polling Agent Asynchronous Processing

13

The asyncio.create_task() is a non-blocking and asynchronous function that

schedules a coroutine to run as an asynchronous task. The task gets scheduled for execution

right away and does not block the caller, enabling multiple tasks to run in parallel. Moreover,

FastAPI utilizes a single-threaded model to minimize thread usage by handling multiple

network I/O operations with a single thread in parallel.

2.8 Feedback Loop

One of the important features of TradeInbox is personalization. The system provides

personalization through the following features.

Figure 10. Feedback Loop page

 The system captures news articles relevant to the stock provided by the user. Some of

the captured articles are evidently related to the stock when the article explicitly describes the

company. However, some articles do not directly mention the company name but are still

reasonably related to the provided stock. For example, if a news article describes the

14

increasing GPU demands in the gaming industry or a strong competitor of Nvidia that is

quickly taking over the GPU market, then it’s reasonable to judge it relevant to Nvidia.

However, one of the challenges to incorporate this relevancy is that the concept of relevancy

is rather a subjective terminology than an objective one. For example, one can argue that a

news article about the gaming industry is definitely related to Nvidia, while others can

dispute that not all game companies rely on GPUs, as there are light-weight Indie games. In

this conflicting situation, neither party is completely wrong. Hence, our team assumed that

there does not exist an axiomatic metric that correctly determines the relevancy.

 Instead, the system integrated a feedback loop that allows users to provide feedback

on the news articles that appear on the dashboard, as the articles in the dashboard are already

marked as relevant by the system. The feedback question is ‘Find it relevant to the stock?’

and users can respond with either ‘Yes’ or ‘No’.

 The first approach our team implemented for the feedback loop was adjusting the

similarity score threshold for each user. If the user finds it relevant, the system remains the

same. If the user responds to it as irrelevant, then the system increases the similarity score

threshold by a small number, such as 0.5, to incorporate the user feedback. However, this

approach had a limitation. Suppose the Keyword Generator LLM generated two keywords

about Nvidia - ‘gaming industry’ and ‘data center demands’. The ‘gaming industry’ keyword

showed a 0.5 similarity score, and the ‘data center demands’ keyword showed a 0.45

similarity score. Hence, the news article is matched with the keyword ‘gaming industry’ with

the maximum score. However, the user might find the ‘gaming industry’ tag irrelevant and

‘data center demands’ highly relevant. In such cases, simply raising the overall similarity

score threshold is ineffective, as it doesn’t allow the user to specifically reject the incorrect

‘gaming industry’ keyword while potentially keeping the relevant ‘data center demands’ one.

15

To tackle this limitation, our team devised an alternative feedback loop system that

effectively incorporates the user feedback. If the user responds it as irrelevant, then the

system will first look for the generated keyword that matched with the news article and

remove the keyword from the Milvus vector database. In this way, the keyword will not be

used in embedding search for incoming news articles, while keeping other keywords as

intact. Additionally, the system will generate an additional example keyword to backfill the

keyword pool.

2.9 Flexible LLM Prompt Engineering Code Design

 The system heavily utilizes LLMs and stores prompts for each LLM task. To

effectively manage multiple prompts and seamlessly add new prompts without code

duplication, our team designed a scalable and maintainable custom LLM prompt executor

following OOP(Object-Oriented Programming) principles.

2.9.1 LLM Client Implementation

Figure 11. LLM Client ChatMessage Implementation

 The prompts are categorized into one of the ‘system’, ‘user’, and ‘assistant’ prompts

and abstracted in a ChatMessage object.

16

Figure 12. LLM Client Implementation

The OpenAIChatLLM class serves as a clean abstraction over the OpenAI API,

providing easy-to-use interfaces. It offers predict_json method that accepts a list of

ChatMessage and returns the LLM response as a JSON using an internal

response_to_dict method. This class also offers apredict_json method, which

offers an asynchronous processing to maximize performance.

2.9.2 Prompt Management System

 One core feature is file-based prompt storage. The prompt management utilities in

utils.py provide a flexible approach to handling prompts. The design allows developers

to maintain LLM prompts solely in external text files, separating prompt content from

17

application logic. Also, a custom prompt parsing logic is implemented, using a content format

with [%role%] delimiter markers to define message boundaries and roles, as well as

{{$placeholder}} format to effectively insert parameters into the prompts.

Figure 13. Prompt Storage Example

The above image shows a prompt example where [%system%] section indicates a

system prompt. The [%user%] and [%assistant%] sections are utilized for few-shot

learning. After the prompt is ready, a developer can easily integrate it with OpenAILLM class

leveraging custom utility functions.

18

Figure 14. Prompt Management Utility Class

 load_prompt_messages utility function with the prompt file path as a

parameter, parses the role delimiters and converts them to a list of ChatMessage objects.

Then, a developer can pass this list to the fill_message_placeholders function with

placeholder values to complete the prompt loading process. Finally, the processed list of

ChatMessage objects will be passed to the OpenAIChatLLM object to obtain the LLM

response. Utilizing the components, one can easily create a new LLM use case as below.

19

Figure 15. Prompt Executor Example

This prompt management design allows seamless integration and scalability, enabling

developers to rapidly build and deploy diverse LLM applications.

2.10 Stock Analysis Report

 After a news article is successfully matched as relevant to the user-provided stock, it

goes through a series of tasks to deliver a detailed report to the user. The report includes the

news summary, key metrics, sentiment analysis, and stock impact analysis.

2.10.1 News Summary

 After the polling agent captures a relevant news article, it generates a brief news

summary by leveraging Large Language Models (LLMs).

[%system%]

You're a professional journalist and an expert in summarizing a news article
into a concise and high-quality summary.

Your Task: Generate a 3-4 sentences summary from the given news article
content from any topic. In addition, generate a short ONE-SENTENCE summary.

[IMPORTANT]

Note that the generated keywords and examples MUST NOT BE too general. IT
MUST BE RELATED TO the provided user input.

{

 "summary": "xxx",

 "one_sentence_summary": "yyy"

}

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

News Article Content: {{$article_content}}

20

Your JSON Output:

Figure 16. News Summary Prompt

The above is the prompt used for the news summary generation. The prompt includes

a system prompt emphasizing on providing a clear summary in regards of the user-provided

stock.

2.10.2 Key Metrics

 Another component of the stock analysis report is the Key Metrics. Experienced retail

traders frequently analyze the stock impact with the factual data, such as Earnings Per

Share(EPS), Return on Equity (ROE), P/E Ratio, or PEG Ratio. Although the news summary

provides an overview glimpse of the news article, it does not fully deliver the list of facts

stated in the news article. Hence, the Key Metrics section curates all the facts from the article,

especially the quantitative metrics. This feature could help experienced traders to quickly

grasp the current status of the market and promptly react to market events.

[%system%]

You’re a professional financial data extraction assistant and an expert in
analyzing news articles and generating key financial metrics in the news
article. Focus on numerical values related to the company’s financial
performance, stock movement, and market reactions.

Your Task: Extract key financial metrics from the provided financial news
article. Focus on numerical values and financial indicators relevant to the
company or market mentioned.

[IMPORTANT]

Note that the key metrics MUST NOT BE generated on your own. It must be
consolidated from the user input. Restrict your each response into one short
concise sentence. Return 1 to 5 key metrics, ensuring each is short and
concise while covering all critical financial indicators. If there’s no key
metrics, return empty list in JSON format given.

21

// Few-shot learning examples hidden due to the length of the text.

Extraction Criteria:

1. Company Performance: Revenue, Net Income, Earnings Per Share (EPS),
Year-over-Year (YoY) or Quarter-over-Quarter (QoQ) changes, Operating Profit,
Gross Margin, etc.

2. Stock Market Metrics: Stock price changes (e.g., % increase or decrease),
pre-market or after-hours movement, analyst target price updates, trading
volume, market capitalization, etc.

3. Financial Ratios: Price-to-Earnings (P/E) ratio, Debt-to-Equity (D/E)
ratio, Dividend Yield, Free Cash Flow, etc.

4. Macroeconomic Indicators (if applicable): Interest rate impact, inflation
rate, GDP growth, unemployment rate.

[%user%]

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

Return the key metrics as concise, well-formatted short sentences.

Article: {{$content}}

Your JSON Output:

Figure 17. Key Metrics Prompt

The above figure shows the prompt used to extract key metrics from the article. The

system prompt emphasizes the definitive criteria of ‘key metrics’. A key metric is one of the

following categories: company performance, such as EPS, YoY, QoQ; stock market metrics

such as trading volume; financial ratios such as P/E ratio, D/E ratio, or Dividend Yield;

macroeconomic indicators including GDP growth and unemployment rate. Additionally, the

prompt follows one-shot learning, providing an example article and expected key metrics to

make the model more aligned with the expected results.

22

2.10.3 Sentiment Analysis

 A core part of the stock analysis report is the sentiment analysis, providing investors

with valuable insights into market perception and emotional trends surrounding a stock. The

sentiment analysis provides the overall sentiment as five levels of ‘Strongly Negative’,

‘Negative’, ‘Neutral’, ‘Positive ’, and ‘Strong Positive.’ Alongside the sentiment tag, the

system provides a detailed explanation, rationalizing why the model tagged the news article

as such. Lastly, the LLM also returns the ‘sentiment score’ ranging from -5 to 5, representing

the positivity of the news article towards the stock price. This score is utilized in the ‘Quick

Summary’ section in the dashboard to select only the most impactful news articles for users.

[%system%]

You're a professional financial expert who specializes in sentiment analysis
of a financial news article related to a provided stock name.

The sentiment analysis includes the following items.

1) One of [Strong Negative, Negative, Neutral, Positive, Strong Positive].

 - where strong negative means the given news article or the contents of the
news article are high indicators of the given stock's price will fall down in
a future.

 - where strong positive means the given news article or the contents of the
news article are high indicators of the given stock's price will go up in a
future

 - Neutral means that it's not reasonable or there's no significant
indicator of the stock price from the news article.

2) Insightful, factual, reasonable, logical, detailed analysis & rationale &
proofs & evidence of your claim from item (1).

 Do not merely give meaningless, verbose, no-depth, abstract reasons. Give
DEFINITIVE PROOFS OR EVIDENCE OR RATIONALE to your claim in a structured
manner.

3) Also, provider a "SENTIMENT SCORE" ranging from [-5 ~ 5] (inclusive) to
indicate how positive/negative the given news is.

23

 - 5 means Strong positive, and -5 means Strong Negative, and 0 means
Neutral.

 - Give it as a floating-point number.

Make sure that your sentiment analysis output is CONCISE AND INSIGHTFUL. It
should not be verbose and long. Must be around 3~4 sentences depending on the
situation.

In addition, you will be provided a specific stock name that you must analyze
the impact with.

Your sentiment analysis of the news article must be done in consideration of
this given stock name.

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

You must return response in the following "JSON" format (only JSON)

{

 "sentiment": "xxx", // item (1) - either Strong_Negative, Negative,
Neutral, Positive, Strong_Positive

 "sentiment_score": xx,

 "analysis": "..." // item (2)

}

Given stock name: {{$stock_name}}

News Title: {{$title}}

News Content: {{$content}}

Your JSON Output:

Figure 18. Sentiment Analysis Prompt

24

The prompt includes clear definitions of positive and negative tags and emphasizes

the factual, insightful, and logical rationale of the predicted sentiment.

2.10.4 Stock Impact Analysis

 The last part of the report is the stock impact analysis, describing how the news article

is likely to impact the stock price in the near future. While the sentiment analysis focuses on

the emotional tone or attitude expressed in text, the stock impact analysis explicitly examines

how the news might affect the price, trading volume, or market position.

[%system%]

You are a stock market news analysis agent that evaluates how news impacts
stock prices, catering to retail investors with three expertise levels (easy,
intermediate, expert).

The news could be discussing any kind of topic, but related to the stock. The
key task is to find an impact to stock price of this news, and possibly
provide a logical explaination behind the stock price prediction in English.

You will also be given a stock name. Create your stock impact analysis report
towards the given stock.

<Requirements>

1. Summary of the news is not compulsory, mainly discuss the implication to
the stock price and logical explanation behind it.

2. If the news has negligible impact to stock price then you can just give
some logical explanation of why it is not important.

3. For the analysis, please find below instructions for your reference. It
would be better if you can provide industry-specific viewpoints, as well.

4. **Easy**: Explain all industry-specific/technical/financial terms (e.g.,
P/E ratio, EBITDA) in simple language. Give full defintion of the terms below
the analysis. better

25

5. **Intermediate**: Assume basic financial knowledge; skip explanations for
common terms (e.g., dividends, market capitalization). Better to give some
explaination of complex technicals below the analysis.

6. **Expert**: Use advanced knowledge (e.g., discounted cash flow, beta
volatility and many others) and financial ratios without much explanations.

<Output Format>

Please return a JSON format like the following:

{

"easy": "..."

"intermediate": "..."

"expert": "..."

}

[%user%]

Example 1: Biotech FDA Approval

Stock: BioPharma Inc.

News Content:

BioPharma Inc. receives FDA approval for its Alzheimer’s drug, projects $1.2B
in peak annual sales, and sets a 12-month price target of $85. A short seller
report warns of trial data inconsistencies.

[%assistant%]

{

"easy": "BioPharma Inc. got approval from the FDA (U.S. drug regulators) for
its Alzheimer’s treatment, which it expects to generate $1.2 billion per
year. Analysts predict the stock could reach $85 within a year, but a
critical report claims some test results might be unreliable. Risks include
competition from larger drugmakers and high R&D costs (money spent developing
new drugs).",

"intermediate": "BioPharma’s FDA approval supports a bullish $85 PT (35x
P/E), but a $300M per quarter cash burn raises dilution risks. Pipeline
catalysts include a Parkinson’s drug entering Phase 2 trials.",

26

"expert": "BioPharma’s Alzheimer’s drug approval (FDA label includes broad
indication) drives PT to $85 (DCF: WACC 12%, $1.2B peak sales, 55%
probability-adjusted). Short seller claims on trial data heterogeneity
(p=0.07 in subgroup) may limit near-term upside. With a cash runway of six
quarters at the current burn rate, an equity offering (15-20% dilution) is
likely. EV/sales at 5x vs. sector 7x reflects pipeline overhang."

}

[%user%]

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

Stock: {{$stock}}

News Content: {{$content}}

Your JSON Output:

Figure 19. Stock Analysis Prompt

The prompt includes instructions to provide the analysis in terms of three difficulty

levels. In the ‘Easy’ level, the analysis removes jargon and industry-specific vocabulary such

as P/E ratio or EBITDA. The ‘Intermediate’ level assumes users possess basic financial

knowledge and skip explanations for common terms such as dividends and market

capitalization. The ‘Expert’ level assumes the full knowledge and include every jargon and

industry specific vocabulary. This feature enables users from different financial backgrounds

to easily navigate the report to make informed investment decisions.

27

2.11 Stock Analysis Report Notification

Figure 20. Discord Stock Analysis Report Notification

 The system delivers the summary of the generated stock analysis report through

Discord, providing users with timely and accessible financial insights. The notification

system leverages Discord’s robust Webhook API. After the polling agent successfully

geneates the report, it immediately sends HTTP request to the Discord Webhook server which

then delivers the report to the pre-selected Discord channel. The delivered summary includes

the news title, sentiment, published datetime, and the news summary.

3. Results and Discussion

 This section provides an overview of the accomplishments achieved, as well as the

difficulties encountered and the possible resolutions.

28

3.1 Example Keyword Generator LLM

One notable achievement to date is the successful implementation of the example

keywords generator LLM. This module expands the user input data by generating additional

keywords and sentences that are highly relevant to the given input (see figure below),

enriching the input for embedding search and thereby improving its performance and

relevance.

For instance, when a user provides a stock name “Nvidia,” the generator produces

5-10 relevant keywords and sentences, including examples such as “AI technology trends,”

“Data center demand,” and “CEO Jensen Huang statements”. These outputs are crafted to

reflect the language and topics commonly associated with financial news articles about

“Nvidia.”

29

Figure 21. Example Keyword Generator LLM Output - The keyword generator produces a

variety of relevant keywords and sentences to enrich the user input.

Notably, the generated examples strongly suggest that the model has the capability to

capture both direct and indirect relevancy. While keywords such as “graphics processing

units” directly relate to Nvidia’s core GPU business, the model also identifies broader and

indirectly related topics, such as “gaming industry growth” and “autonomous vehicle

partnerships,” that heavily leverage AI chip technology. This ability to generate versatile and

contextually aligned examples could significantly enhance the embedding search process by

enabling more precise article filtering, ensuring that highly relevant and diverse articles are

identified and analyzed for summary generation.

News Article Title Matched Keyword Similarity
Score

Arm Holdings Reportedly Aims To Capture
Half Of The Data Center CPU Market In
2025 – Retail's Divided As Stock Falls

AI technology trends 0.437

 Nasdaq Sell-Off: After Losing Nearly $800
Billion in Market Cap, Is Nvidia Stock a
Buy Anymore? History Offers a Clear
Indicator of What Could Happen Next.

NVIDIA Corporation 0.521

AI datacenters want to go nuclear. Too bad
they needed it yesterday

data center demand 0.494

AMD Downgraded as AI Chip Struggles to
Challenge Nvidia's Grip

major competitor AMD 0.616

Table 1. Keyword Generator LLM Result

 The above table shows examples of matched news article for ‘Nvidia’ as well as its

matched keyword and similarity score. It’s observed that each a diverse set of keywords

30

successfully capture various news articles, demonstrating the effectiveness of the keyword

generation embedding search approach.

3.2 Stock Dashboard UI

Figure 22. Stock Dashboard Page

 The stock dashboard displays a variety of stock information including the current

stock price, previous close price, and stock price history. Also, the dashboard displays the

“Quick Summary” where the system aggregates the recent news articles and selects the

highest similarity score for each positive and negative to allow users to quickly grasp the

recent trend. Lastly, a list of relevant news articles along with a one-sentence summary and

sentiment are shown at the right panel.

31

3.3 Stock Analysis Report UI

Figure 23. Stock Analysis Report Page

The above figure displays the components of the stock analysis report. The news

summary provides a brief overview of the article. The Key Metrics section displays a list of

quantitative fact data extracted from the text. The system also provides the sentiment analysis

describing the emotional tone and attitude surrounding the article. Lastly, the stock impact

analysis is provided describing how the news article is likely to impact the stock price in the

near future.

32

3.4 Difficulties and Possible Resolutions

One significant difficulty encountered is the detection of the newly updated articles

from web-scraped data. Since the scraping agent continuously scrapes a news website at short

intervals of 1 to 5 seconds, there may be instances where no new articles are published within

that time frame. As a result, the agent must efficiently determine whether a scraped article is

new or has already been processed, to avoid redundant processing and waste of resources.

To address this issue, an improved scraping mechanism is proposed. Rather than

scraping the full content of each article at every interval, the system first retrieves only the

published date and time of the article. If the date and time indicate that it’s indeed new, then

the agent proceeds to process its main content. The scraping agent also tracks the latest

scraped published date and time. This allows it to compare the timestamp of newly scraped

articles: if the published date and time are equal to or earlier than the stored latest timestamp,

the agent can safely skip processing the article further.

This optimized approach could reduce unnecessary data processing and ensure that

the system focuses only on genuinely new content, enhancing efficiency in handling real-time

article updates.

5. Conclusion

 The primary objective of this project is to streamline the financial news processing for

retail investors to mitigate the risks of delayed news processing and aid better investment

decisions. This paper described the implementation of the LLM-based real-time financial

news notification system, to help retail investors make informed decisions by delivering

relevant news quickly and efficiently. The significance of this system lies in its potential

33

ability to bridge the gap between processing raw financial data and generating actionable

insights for retail investors. By automating the identification, analysis, and delivery of

relevant news, the system could save time and reduce the burden of manual research for

investors. It is likely to enhance the decision-making process with predictive analysis

performed by the system's LLMs, particularly for retail investors who lack the time or

expertise to perform such analyses by themselves.

 The project’s result highlights the significance of its potential to transform how

investors interact with financial news by providing personalized information updates. The

successful implementation of the example generator LLM, which produces highly pertinent

example keywords and sentences tailored to user inputs, has been a critical step to achieving

personalization. These outputs integrate with the embedding search module, a core

component to filter out only the most relevant news articles, ensuring effective

personalization of financial content.

 Nevertheless, further refinement in the Keyword Generator LLM model via

fine-tuning is required to improve the relevancy of keywords generated to the user inputs and

the accuracy of the relevant news article selected for that user for personalization based on

quantitiative evaluation process. Therefore, future works include fine-tuning the Keyword

Generator LLM with a manually curated dataset and implementing the embedding search

model to quantitatively evaluate the relevance between user inputs and the actual financial

news chosen. These steps are crucial for improving the system's accuracy and achieving

reliable personalization for the user. The successful implementation of these steps will keep

significant progress toward achieving the project's objectives in personalization and

addressing the needs of retail investors.

34

 Moreover, as the system currently relies on a limited news dataset, it’s difficult to

generalize the system’s performance in a more real-world setting with diverse streams of

news websites such as New York Times, Bloomberg, and Wall Street Journal. Hence, an

important future work would be constructing a pipeline to ingest from diverse sources of

news articles to better reflect the real-world settings.

35

References

[1] T. Wang, "FTX exchange halts all crypto withdrawals," coindesk.com, 2022. [Online].

Available:

https://www.coindesk.com/business/2022/11/08/ftx-exchange-halts-all-crypto-withdrawals.

[Accessed: Oct. 15, 2024].

[2] "Who Reads Finance News? Traffic and User Behavior," fintext.io. [Online]. Available:

https://www.fintext.io/case-studies/benchmarking/who-reads-financial-news-web-traffic-and-

user-behaviour. [Accessed: Oct. 15, 2024].

[3] "Yahoo Finance," finance.yahoo.com. [Online]. Available: https://finance.yahoo.com.

[Accessed: Oct. 15, 2024].

[4] "Refinitiv Data Platforms APIs," developers.lseg.com. [Online]. Available:

https://developers.lseg.com/en/api-catalog/refinitiv-data-platform/refinitiv-data-platform-apis

. [Accessed: Oct. 15, 2024].

[5] J.-T. Huang et al., "Embedding-based Retrieval in Facebook Search," in Proc. 26th ACM

SIGKDD Int. Conf. Knowledge Discovery & Data Mining (KDD '20), pp. 2553–2561, Aug.

2020. doi: 10.1145/3394486.3403305.

[6] "Picking a vector database: a comparison and guide for 2023," benchmark.vectorview.ai.

[Online]. Available: https://benchmark.vectorview.ai/vectordbs.html. [Accessed: Oct. 15,

2024].

36

https://www.coindesk.com/business/2022/11/08/ftx-exchange-halts-all-crypto-withdrawals
https://www.coindesk.com/business/2022/11/08/ftx-exchange-halts-all-crypto-withdrawals
https://www.fintext.io/case-studies/benchmarking/who-reads-financial-news-web-traffic-and-user-behaviour
https://www.fintext.io/case-studies/benchmarking/who-reads-financial-news-web-traffic-and-user-behaviour
https://www.fintext.io/case-studies/benchmarking/who-reads-financial-news-web-traffic-and-user-behaviour
https://finance.yahoo.com
https://developers.lseg.com/en/api-catalog/refinitiv-data-platform/refinitiv-data-platform-apis
https://developers.lseg.com/en/api-catalog/refinitiv-data-platform/refinitiv-data-platform-apis
https://benchmark.vectorview.ai/vectordbs.html

	THE UNIVERSITY OF HONG KONG
	Abstract
	
	Acknowledgments
	
	
	
	
	
	
	
	
	
	
	Table of Contents
	
	List of Figures
	List of Tables
	1. Introduction
	2. Methodology
	2.1 Data Source and APIs
	2.2 System Architecture
	2.3 Authentication with JSON Web Token (JWT)
	2.4 Development Tools and Infrastructure
	2.5 Features and UI & UX
	2.5.1 Multi-Stock Input
	2.5.2 Dashboard
	2.6 Embedding Search & Keyword Generator LLM
	2.7 Polling Agent
	2.8 Feedback Loop
	2.9 Flexible LLM Prompt Engineering Code Design
	2.9.1 LLM Client Implementation
	2.9.2 Prompt Management System
	2.10 Stock Analysis Report
	2.10.1 News Summary
	2.10.2 Key Metrics
	2.10.3 Sentiment Analysis
	2.10.4 Stock Impact Analysis
	2.11 Stock Analysis Report Notification
	3. Results and Discussion
	3.1 Example Keyword Generator LLM
	3.2 Stock Dashboard UI
	5. Conclusion
	
	References

