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Abstract 

Today’s volatile financial market and the overwhelming volume of data make it 

challenging for individual investors to receive timely, relevant updates on their stock 

portfolios, as manually sifting through vast amounts of information may lead to missed 

opportunities or losses. The project aims to tackle these challenges by processing 

user-provided stock information, enhancing it with a keyword generator LLM, and utilizing 

embedding search to filter relevant news. The summary generator LLM will produce 

personalized news summaries, delivered in real-time, empowering investors to make more 

informed investment decisions. Initial results include the implementation of the keyword 

generator LLM that could improve article relevance filtering by producing pertinent 

keywords and sentences that are likely to appear in financial news relevant to user inputs. By 

providing timely summaries, the system aims to help investors respond swiftly to volatile 

market events. The immediate next step is front-end development using React to build an 

interactive user interface for the system. 
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1. Introduction 

In today's highly dynamic financial markets, access to relevant and up-to-date 

information is critical for informed decision-making. A prime example of this is the collapse 

of FTX. On 8 November 2022, after news articles were published that FTX announced to halt 

all withdrawals, Bitcoin's price plummeted from 20,600 USD to 15,883 USD within just a 

few days [1]. This incident demonstrates the importance of promptly reacting to market 

events to minimize losses. 

However, individual traders often struggle to navigate the overwhelming volume and 

pace of financial news. With thousands of articles published daily across various platforms at 

unpredictable times, identifying relevant information quickly becomes a significant 

challenge. A web traffic study by FinText shows that readers spend an average of 30 to 60 

seconds per page on financial articles and read 3 to 4 articles daily [2], underscoring the 

difficulty of navigating news with limited time and resources. While platforms like Yahoo 

Finance provide real-time news alerts, they lack personalized summaries and stock impact 

analysis tailored to user custom inputs [3], requiring traders to manually analyze articles for 

relevance and potential impact—a time-intensive process. 

The project ‘LLM-based real-time and personalized financial news notification 

system’ is a web-based system aiming to tackle this challenge by delivering real-time 

summary and impact analysis of news articles relevant to user’s stock portfolio by leveraging 

Large Language Models (LLM), focusing specifically on the USA stock market. Recent 

achievements in LLMs have enabled new ways of processing text data with its capability to 

understand unstructured natural language texts and produce highly customizable output 

utilizing prompt engineering. Within the project, LLMs specifically fine-tuned for financial 

news analysis, combined with user input such as stock names or custom keywords, allow the 
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system to filter and select only the most relevant news articles. The system then generates 

article summaries and stock impact analyses, delivered to users through various SNS 

channels, including Whatsapp and Discord, to provide convenient access to critical market 

information. To ensure the most up-to-date information, multiple agents continuously poll 

target finance APIs and news websites at short intervals, extensively utilizing multi-threading 

and asynchronous message queues to minimize latency and ensure real-time delivery. The 

system also incorporates a dashboard user interface displaying stock graphs alongside the 

history of the generated news article summaries and impact analyses to provide users with an 

intuitive view of investment trends. 

The project’s objective is to help investors make more informed investment decisions 

by providing tailored news summaries related to their stock portfolios, ensuring they can stay 

informed without being overwhelmed by manually exploring vast amounts of information. 

Also, the project aims to enable investors to act promptly on potential investment 

opportunities or minimize losses through a real-time notification system. 

The remainder of the report is structured as follows. First, Chapter 2 discusses the 

details of the methodologies adopted throughout the project. Next, Chapter 3 presents the key 

achievements and the potential future improvements for the project. Lastly, Chapter 4 

provides a summary and conclusion of the work conducted. 

2. Methodology 

This section introduces the methodologies utilized in the project. It details the data 

source and APIs, system architecture, and various system components to achieve 

personalization and real-time news summary and analysis delivery. 
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2.1 Data Source and APIs 

The project will utilize Refinitiv API [4] to retrieve stock information, including stock 

name, industry classification, and relevant keywords and tags describing the company and its 

activities. The decisive advantage of Refinitiv API, compared to other finance information 

providers, is that it provides endpoints to retrieve real-time news updates along with 

headlines and full content. A custom web scraper will be implemented to poll extra sources, 

such as the Yahoo Finance website as a supplementary data source, as Refinitiv API does not 

fully cover every financial news website. 

2.2 System Architecture 

The system will have various components (see Figure 1 below) to construct a 

personalized and real-time financial news notification system. 
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Figure 1. System Architecture - The system generates the embeddings from the user-provided 

stock information and stores them in the vector database. A polling agent extracts news 

articles, and LLMs analyze them to create personalized insights, delivering real-time updates 

to users through SNS channels. 

The system’s personalization begins with user input processing. Upon registration, 

users can provide stock names or custom keywords such as ‘beverage industry’ or ‘GenAI,’ 

which will be used for personalized news article selection. If stock names are provided, the 

system will utilize Refinitiv API to fetch stock information, including industry classification 

and keywords. Once the system has stock names or keywords, the Keyword Generator LLM 

will expand the data by generating additional related keywords and example sentences that 

reflect potential news narratives. The generated keywords and sentences will then be 

converted into embeddings and saved into a vector database. The vector database will be 

utilized for efficient embedding search against news articles to filter only the relevant ones. 

To achieve real-time delivery, a polling agent, a background batch process running 

asynchronously from the main backend, will continuously poll Refinitiv API and financial 

news websites at short intervals (about 10 seconds) to extract news articles. The Document 

Analyzer will compare the embeddings of each article with the stored embeddings of 

user-specific keywords and example sentences. This process selects only the users whose 

stock data is relevant to the extracted article. Finally, the fine-tuned Stock Analyzer LLM will 

generate a summary and user-specific stock impact analysis and deliver them to users through 

SNS channels. 
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2.3 Authentication with JSON Web Token (JWT) 

 

 

Figure 2. Sign-In Page 

Strong authentication is crucial, especially because the service handles user 

personalized financial data. TradeInbox leverages JWT(JSON Web Token) as a primary 

authentication mechanism. JWT acts as a stateless access token consisting of a header, 

payload, and signature. A user signs in with a username and password, and the server 

responds with a JWT signed with the secret key. Then, in subsequent requests, the user 

attaches the access token to the ‘Authorization’ HTTP header for verification. 

Our team chose JWT primarily due to its stateless characteristic in a distributed and 

scaled-out environment. The server is expected to adopt horizontal scale-out as the user 

traffic increases, and JWT allows each server to share only the secret key to seamlessly scale 
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out without maintaining a separate session storage such as Redis. Moreover, JWT token is 

self-contained, meaning it contains all necessary information about the user (i.e., user ID), 

reducing additional database queries. 

2.4 Development Tools and Infrastructure 

 

Figure 3. Development Tools and Infrastructure 

 The primary backend system of the project is implemented using FastAPI. FastAPI is 

a modern back-end framework written in Python, offering high performance and scalability. 

FastAPI is built on ASGI(Asynchronous Server Gateway Interface operating on a 

single-threaded model, providing high performance, especially in a network I/O heavy 

environment. This ability significantly saves resources and boosts the overall performance of 

the app, as TradeInbox features heavily rely on external API providers such as OpenAI and 

Zilliz Cloud. Another consideration was the language compatibility with libraries. The 

backend system heavily utilizes LLM APIs and libraries such as OpenAI, LangChain, and 

Milvus, and most of them best support Python as their primary SDK language. 

The project’s infrastructure will be hosted on Amazon Web Services (AWS) for its 

first-class scalability and reliability. Moreover, Milvus will be used as the vector database due 

to its superior performance metrics. It provides the highest 2,406 queries-per-second rates and 

offers the lowest computation latency(1 ms), outperforming alternatives such as Pinecone and 

Qdrant [6]. 
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The front-end will be developed with React, chosen for its efficiency, reusability of 

components, and strong ecosystem for building dynamic web applications. React also 

provides a powerful component-based architecture, breaking down complex UIs into reusable 

components. 

2.5 Features and UI & UX 

 This section provides an overview of the project features, user journey flow, as well as 

the descriptions of the user interface (UI). 

2.5.1 Multi-Stock Input 

 

Figure 4. Stock Input Page 

Upon a successful sign-in, user could provide a list of stocks to track. TradeInbox 

maintains a database of 4793 publicly-listed companies in NASDAQ. To simplify the search 

process, user can search by either a stock name or a stock ticker. 
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2.5.2 Dashboard 

 After successfully providing stocks, the user will be directed to the main dashboard, 

where each stock will have its own dedicated dashboard. The left portion of the dashboard 

shows a overview of stock information including the exchange, industry sector, current stock 

price, as well as previous close price. Additionally, the dashboard displays the past month’s 

price history as well as the trading volume history. 

 The left side of the dashboard provides a personalized news curation. Once the user 

has provided the stocks, the system automatically scrapes and collects the news articles 

relevant to the stock and curate them with further analysis. Since there might be an excessive 

amount of the captured news articles, the app provides the ‘Quick Summary’ where the user 

can easily glimpse at what positive and negative events have happened recently related to the 

stock. The curation also provides a list of the captured news articles, offering the title, a short 

summary, and the sentiment analysis result such as ‘Positive’, ‘Negative’, or ‘Strong 

Positive’. To allow users to quickly identify the strong indicators, the news articles with a 

sentiment ‘Strong Positive’ and ‘Strong Negative’ are highlighted in background. 

2.5.3 Stock Impact Analysis Report 
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Figure 5. Stock Analysis Report Page 

 When clicking on a news article, the system shows a detailed stock analysis report 

including a summary, key metrics extracted from the article, sentiment analysis, and the stock 

impact analysis predicting how the article is likely to impact the stock price. 

2.6 Embedding Search & Keyword Generator LLM 

 Embeddings are numerical representations of words or sentences in vector space, 

capturing the semantic relationships between text data [5]. Due to their ability to distinguish 

semantic nuances, embeddings are frequently utilized in embedding search, also known as 

semantic search, to determine the similarity between sentences or whole documents. 

 Upon receiving the stock from the user, the system will generate the embedding 

vectors from the stock name and store them in the Milvus vector database. Meanwhile, the 

polling agent continuously scrapes the news articles and converts the news title and the body 

into vector embeddings and performs embedding search against the user-provided stock 

embedding to calculate the cosine similarity score. If the similarity score exceeds a 

pre-defined threshold, then the article is considered a match and stored in the database. The 

cosine similarity score threshold was set to 0.4 in the system based on the experiments. The 

news articles that clearly have no relation to the stock tend to show an extremely low 

similarity score. For example, the news article ‘Spurs take on the Grizzlies on 3-game losing 

streak’ showed the score of 0.016 when comparing against the embedding of ‘NVIDIA 

Corporation’. Also, the system converts the whole news article body into a single embedding. 

Hence, our team assumed that due to the lengthy text, detailed semantics are diluted, resulting 

in a relatively lower similarity score. On the other hand, relevant articles such as ‘Nasdaq 

Sell-Off: After Losing Nearly $800 Billion in Market Cap, Is Nvidia Stock a Buy Anymore?’ 

consistently show above 0.4 similarity score. 
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 Directly converting the stock name, such as ‘Nvidia’, into the vector embedding 

might work in scenarios where the stock name is explicitly stated in the news content. 

However, it suffers when a news article is indirectly related to the given stock, where neither 

the news title nor the content explicitly contains the stock name. An example is the news 

where the title is ‘Arm Holdings Reportedly Aims To Capture Half of the Data Center CPU 

Market in 2025 - Retail’s Divided As Stock Falls’ and the content doesn’t directly include the 

word ‘Nvidia.’ This article is reasonably related to Nvidia, as it describes that Arm aims to 

capture a significant share of the data center CPU market, particularly in the AI sector, which 

could pose a threat to Nvidia. However, simply calculating the similarity score from the stock 

name’s embedding gives only 0.26. 

To tackle this challenge of capturing indirectly related news articles, the Keyword 

Generator LLM is devised. The Keyword Generator LLM will expand the user input to a 

richer dataset for a more robust embedding search. For instance, if a user is interested in 

Coca-Cola, the LLM might generate additional phrases like ‘beverage industry trends’ or ‘the 

introduction of sugar taxes has led to a decrease in demand for traditional sugary beverages,’ 

enabling a more thorough analysis. 

 Integrating with this approach, the system generates 10 example keywords from the 

user-provided stock name. The system then generates a vector embedding for each of the 

keywords as well as from the stock name itself, resulting in a total of 11 vector embeddings 

stored in the vector database. When the polling agent captures a fresh news article, the 

embedding search is performed against each of the stored keywords. Next, it will select the 

one with the maximum cosine similarity score and determine whether the article is relevant if 

the maximum score exceeds the threshold. This approach allows the system to obtain a 

diverse set of perspectives to determine relevancy. If the news article explicitly contains the 
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stock name, then the vector embedding extracted from the stock name is likely to be matched, 

while the indirectly related news articles will be captured by those of the generated keywords. 

 

Figure 6. Embedding Search Result 1 

 

Figure 7. Embedding Search Result 2 

 The following experiments demonstrate the effectiveness of this strategy. With the 

‘Nvidia’ as user input, the system generated keywords such as ‘graphics processing units’, 

‘AI technology trends’, ‘gaming industry growth’, ‘data center demand’, and ‘major 

competitor AMD’.  The cosine similarity score between the stock name ‘Nvidia’ itself and 

the news article ‘Arm Holdings Reportedly Aims To Capture Half of the Data Center CPU 

Market in 2025 - Retail’s Divided As Stock Falls’ was 0.26, failing to exceed the threshold of 
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0.4. On the other hand, one of the generated keywords, ‘AI technology trends,’ resulted in 

0.44, which exceeds the threshold. 

 On the other hand, the news article ‘Nasdaq Sell-Off: After Losing Nearly $800 

Billion in Market Cap, Is Nvidia Stock a Buy Anymore?’ is matched with the stock name 

‘Nvidia’, showing a 0.52 similarity score. The experiments show that the system can capture 

both directly and indirectly related news articles, backed by the diverse generated keywords.  

2.7 Polling Agent 

 

Figure 8. Polling Agent 

The polling agent continuously polls every 10 minutes from the news API to fetch 

fresh news articles. The polling agent runs on the same backend server and is implemented 

using the APScheduler library’s BackgroundScheduler to implement recurring tasks without 

blocking the main thread. After the polling agent receives a news article, the agent performs a 
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series of tasks, including the embedding search, news summary generation, sentiment 

analysis, and stock impact analysis.  

However, the above tasks leverage LLM APIs, which involve heavy network I/O 

operations. Unlike traditional APIs, whose latency usually spans from 50ms ~ 500ms, the 

external LLM APIs such as OpenAI take a considerable amount of time, often surpassing 

5~10 seconds. If those tasks are executed serially, then the total latency of each news 

processing is expected to take more than 30 seconds, which is too long for real-time 

processing and unscalable when heavy traffic comes. To optimize, the system leverages 

Python’s asynchronous programming capabilities through asyncio and aiohttp to enable 

concurrent processing of those heavy network I/O bound tasks. The below is a brief summary 

of the polling codebase. 

 

Figure 9. Polling Agent Asynchronous Processing 
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The asyncio.create_task() is a non-blocking and asynchronous function that 

schedules a coroutine to run as an asynchronous task. The task gets scheduled for execution 

right away and does not block the caller, enabling multiple tasks to run in parallel. Moreover, 

FastAPI utilizes a single-threaded model to minimize thread usage by handling multiple 

network I/O operations with a single thread in parallel. 

2.8 Feedback Loop 

One of the important features of TradeInbox is personalization. The system provides 

personalization through the following features. 

 

Figure 10. Feedback Loop page 

 The system captures news articles relevant to the stock provided by the user. Some of 

the captured articles are evidently related to the stock when the article explicitly describes the 

company. However, some articles do not directly mention the company name but are still 

reasonably related to the provided stock. For example, if a news article describes the 
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increasing GPU demands in the gaming industry or a strong competitor of Nvidia that is 

quickly taking over the GPU market, then it’s reasonable to judge it relevant to Nvidia. 

However, one of the challenges to incorporate this relevancy is that the concept of relevancy 

is rather a subjective terminology than an objective one. For example, one can argue that a 

news article about the gaming industry is definitely related to Nvidia, while others can 

dispute that not all game companies rely on GPUs, as there are light-weight Indie games. In 

this conflicting situation, neither party is completely wrong. Hence, our team assumed that 

there does not exist an axiomatic metric that correctly determines the relevancy.  

 Instead, the system integrated a feedback loop that allows users to provide feedback 

on the news articles that appear on the dashboard, as the articles in the dashboard are already 

marked as relevant by the system. The feedback question is ‘Find it relevant to the stock?’ 

and users can respond with either ‘Yes’ or ‘No’. 

 The first approach our team implemented for the feedback loop was adjusting the 

similarity score threshold for each user. If the user finds it relevant, the system remains the 

same. If the user responds to it as irrelevant, then the system increases the similarity score 

threshold by a small number, such as 0.5, to incorporate the user feedback. However, this 

approach had a limitation. Suppose the Keyword Generator LLM generated two keywords 

about Nvidia - ‘gaming industry’ and ‘data center demands’. The ‘gaming industry’ keyword 

showed a 0.5 similarity score, and the ‘data center demands’ keyword showed a 0.45 

similarity score. Hence, the news article is matched with the keyword ‘gaming industry’ with 

the maximum score. However, the user might find the ‘gaming industry’ tag irrelevant and 

‘data center demands’ highly relevant. In such cases, simply raising the overall similarity 

score threshold is ineffective, as it doesn’t allow the user to specifically reject the incorrect 

‘gaming industry’ keyword while potentially keeping the relevant ‘data center demands’ one. 
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To tackle this limitation, our team devised an alternative feedback loop system that 

effectively incorporates the user feedback. If the user responds it as irrelevant, then the 

system will first look for the generated keyword that matched with the news article and 

remove the keyword from the Milvus vector database. In this way, the keyword will not be 

used in embedding search for incoming news articles, while keeping other keywords as 

intact. Additionally, the system will generate an additional example keyword to backfill the 

keyword pool. 

2.9 Flexible LLM Prompt Engineering Code Design 

 The system heavily utilizes LLMs and stores prompts for each LLM task. To 

effectively manage multiple prompts and seamlessly add new prompts without code 

duplication, our team designed a scalable and maintainable custom LLM prompt executor 

following OOP(Object-Oriented Programming) principles. 

2.9.1 LLM Client Implementation 

 

Figure 11. LLM Client ChatMessage Implementation 

 The prompts are categorized into one of the ‘system’, ‘user’, and ‘assistant’ prompts 

and abstracted in a ChatMessage object. 
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Figure 12. LLM Client Implementation 

The OpenAIChatLLM class serves as a clean abstraction over the OpenAI API, 

providing easy-to-use interfaces. It offers predict_json method that accepts a list of 

ChatMessage and returns the LLM response as a JSON using an internal 

response_to_dict method. This class also offers apredict_json method, which 

offers an asynchronous processing to maximize performance. 

2.9.2 Prompt Management System 

 One core feature is file-based prompt storage. The prompt management utilities in 

utils.py provide a flexible approach to handling prompts. The design allows developers 

to maintain LLM prompts solely in external text files, separating prompt content from 
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application logic. Also, a custom prompt parsing logic is implemented, using a content format 

with [%role%] delimiter markers to define message boundaries and roles, as well as 

{{$placeholder}} format to effectively insert parameters into the prompts. 

 

Figure 13. Prompt Storage Example 

The above image shows a prompt example where [%system%] section indicates a 

system prompt. The [%user%] and [%assistant%] sections are utilized for few-shot 

learning. After the prompt is ready, a developer can easily integrate it with OpenAILLM class 

leveraging custom utility functions. 
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Figure 14. Prompt Management Utility Class 

 load_prompt_messages utility function with the prompt file path as a 

parameter, parses the role delimiters and converts them to a list of ChatMessage objects. 

Then, a developer can pass this list to the fill_message_placeholders function with 

placeholder values to complete the prompt loading process. Finally, the processed list of 

ChatMessage objects will be passed to the OpenAIChatLLM object to obtain the LLM 

response. Utilizing the components, one can easily create a new LLM use case as below. 
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Figure 15. Prompt Executor Example 

This prompt management design allows seamless integration and scalability, enabling 

developers to rapidly build and deploy diverse LLM applications. 

2.10 Stock Analysis Report 

 After a news article is successfully matched as relevant to the user-provided stock, it 

goes through a series of tasks to deliver a detailed report to the user. The report includes the 

news summary, key metrics, sentiment analysis, and stock impact analysis. 

2.10.1 News Summary 

 After the polling agent captures a relevant news article, it generates a brief news 

summary by leveraging Large Language Models (LLMs). 

[%system%] 

You're a professional journalist and an expert in summarizing a news article 
into a concise and high-quality summary. 

Your Task: Generate a 3-4 sentences summary from the given news article 
content from any topic. In addition, generate a short ONE-SENTENCE summary. 

 

[IMPORTANT] 

Note that the generated keywords and examples MUST NOT BE too general. IT 
MUST BE RELATED TO the provided user input. 

{ 

 "summary": "xxx", 

 "one_sentence_summary": "yyy" 

} 

 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

News Article Content: {{$article_content}} 
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Your JSON Output: 

 

Figure 16. News Summary Prompt 

The above is the prompt used for the news summary generation. The prompt includes 

a system prompt emphasizing on providing a clear summary in regards of the user-provided 

stock. 

2.10.2 Key Metrics 

 Another component of the stock analysis report is the Key Metrics. Experienced retail 

traders frequently analyze the stock impact with the factual data, such as Earnings Per 

Share(EPS), Return on Equity (ROE), P/E Ratio, or PEG Ratio. Although the news summary 

provides an overview glimpse of the news article, it does not fully deliver the list of facts 

stated in the news article. Hence, the Key Metrics section curates all the facts from the article, 

especially the quantitative metrics. This feature could help experienced traders to quickly 

grasp the current status of the market and promptly react to market events. 

[%system%] 

You’re a professional financial data extraction assistant and an expert in 
analyzing news articles and generating key financial metrics in the news 
article. Focus on numerical values related to the company’s financial 
performance, stock movement, and market reactions. 

 

Your Task: Extract key financial metrics from the provided financial news 
article. Focus on numerical values and financial indicators relevant to the 
company or market mentioned. 

 

[IMPORTANT] 

Note that the key metrics MUST NOT BE generated on your own. It must be 
consolidated from the user input. Restrict your each response into one short 
concise sentence. Return 1 to 5 key metrics, ensuring each is short and 
concise while covering all critical financial indicators. If there’s no key 
metrics, return empty list in JSON format given. 

21 



 

 

// Few-shot learning examples hidden due to the length of the text. 

 

Extraction Criteria: 

1.  Company Performance: Revenue, Net Income, Earnings Per Share (EPS), 
Year-over-Year (YoY) or Quarter-over-Quarter (QoQ) changes, Operating Profit, 
Gross Margin, etc. 

2.  Stock Market Metrics: Stock price changes (e.g., % increase or decrease), 
pre-market or after-hours movement, analyst target price updates, trading 
volume, market capitalization, etc. 

3.  Financial Ratios: Price-to-Earnings (P/E) ratio, Debt-to-Equity (D/E) 
ratio, Dividend Yield, Free Cash Flow, etc. 

4.  Macroeconomic Indicators (if applicable): Interest rate impact, inflation 
rate, GDP growth, unemployment rate. 

[%user%] 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

Return the key metrics as concise, well-formatted short sentences. 

 

Article: {{$content}} 

Your JSON Output: 

 

Figure 17. Key Metrics Prompt 

The above figure shows the prompt used to extract key metrics from the article. The 

system prompt emphasizes the definitive criteria of ‘key metrics’. A key metric is one of the 

following categories: company performance, such as EPS, YoY, QoQ; stock market metrics 

such as trading volume; financial ratios such as P/E ratio, D/E ratio, or Dividend Yield; 

macroeconomic indicators including GDP growth and unemployment rate. Additionally, the 

prompt follows one-shot learning, providing an example article and expected key metrics to 

make the model more aligned with the expected results. 
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2.10.3 Sentiment Analysis 

 A core part of the stock analysis report is the sentiment analysis, providing investors 

with valuable insights into market perception and emotional trends surrounding a stock. The 

sentiment analysis provides the overall sentiment as five levels of ‘Strongly Negative’, 

‘Negative’, ‘Neutral’, ‘Positive ’, and ‘Strong Positive.’ Alongside the sentiment tag, the 

system provides a detailed explanation, rationalizing why the model tagged the news article 

as such. Lastly, the LLM also returns the ‘sentiment score’ ranging from -5 to 5, representing 

the positivity of the news article towards the stock price. This score is utilized in the ‘Quick 

Summary’ section in the dashboard to select only the most impactful news articles for users. 

[%system%] 

You're a professional financial expert who specializes in sentiment analysis 
of a financial news article related to a provided stock name. 

 

The sentiment analysis includes the following items. 

 

1) One of [Strong Negative, Negative, Neutral, Positive, Strong Positive]. 

  - where strong negative means the given news article or the contents of the 
news article are high indicators of the given stock's price will fall down in 
a future. 

  - where strong positive means the given news article or the contents of the 
news article are high indicators of the given stock's price will go up in a 
future 

  - Neutral means that it's not reasonable or there's no significant 
indicator of the stock price from the news article. 

2) Insightful, factual, reasonable, logical, detailed analysis & rationale & 
proofs & evidence of your claim from item (1). 

  Do not merely give meaningless, verbose, no-depth, abstract reasons. Give 
DEFINITIVE PROOFS OR EVIDENCE OR RATIONALE to your claim in a structured 
manner. 

3) Also, provider a "SENTIMENT SCORE" ranging from [-5 ~ 5] (inclusive) to 
indicate how positive/negative the given news is. 
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  - 5 means Strong positive, and -5 means Strong Negative, and 0 means 
Neutral. 

  - Give it as a floating-point number. 

 

Make sure that your sentiment analysis output is CONCISE AND INSIGHTFUL. It 
should not be verbose and long. Must be around 3~4 sentences depending on the 
situation. 

 

In addition, you will be provided a specific stock name that you must analyze 
the impact with. 

Your sentiment analysis of the news article must be done in consideration of 
this given stock name. 

 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

 

You must return response in the following "JSON" format (only JSON) 

{ 

   "sentiment": "xxx", // item (1) - either Strong_Negative, Negative, 
Neutral, Positive, Strong_Positive 

   "sentiment_score": xx, 

   "analysis": "..." // item (2) 

} 

 

Given stock name: {{$stock_name}} 

News Title: {{$title}} 

News Content: {{$content}} 

 

Your JSON Output: 

 

Figure 18. Sentiment Analysis Prompt 

24 



 

The prompt includes clear definitions of positive and negative tags and emphasizes 

the factual, insightful, and logical rationale of the predicted sentiment. 

2.10.4 Stock Impact Analysis 

 The last part of the report is the stock impact analysis, describing how the news article 

is likely to impact the stock price in the near future. While the sentiment analysis focuses on 

the emotional tone or attitude expressed in text, the stock impact analysis explicitly examines 

how the news might affect the price, trading volume, or market position.  

[%system%] 

You are a stock market news analysis agent that evaluates how news impacts 
stock prices, catering to retail investors with three expertise levels (easy, 
intermediate, expert). 

 

The news could be discussing any kind of topic, but related to the stock. The 
key task is to find an impact to stock price of this news, and possibly 
provide a logical explaination behind the stock price prediction in English. 

 

You will also be given a stock name. Create your stock impact analysis report 
towards the given stock. 

 

<Requirements> 

 

1. Summary of the news is not compulsory, mainly discuss the implication to 
the stock price and logical explanation behind it. 

2. If the news has negligible impact to stock price then you can just give 
some logical explanation of why it is not important. 

3. For the analysis, please find below instructions for your reference. It 
would be better if you can provide industry-specific viewpoints, as well. 

4. **Easy**: Explain all industry-specific/technical/financial terms (e.g., 
P/E ratio, EBITDA) in simple language. Give full defintion of the terms below 
the analysis. better 
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5. **Intermediate**: Assume basic financial knowledge; skip explanations for 
common terms (e.g., dividends, market capitalization). Better to give some 
explaination of complex technicals below the analysis. 

6. **Expert**: Use advanced knowledge (e.g., discounted cash flow, beta 
volatility and many others) and financial ratios without much explanations. 

 

<Output Format> 

Please return a JSON format like the following: 

 

{ 

"easy": "..." 

"intermediate": "..." 

"expert": "..." 

} 

 

[%user%] 

Example 1: Biotech FDA Approval 

 

Stock: BioPharma Inc. 

 

News Content: 

BioPharma Inc. receives FDA approval for its Alzheimer’s drug, projects $1.2B 
in peak annual sales, and sets a 12-month price target of $85. A short seller 
report warns of trial data inconsistencies. 

 

[%assistant%] 

{ 

"easy": "BioPharma Inc. got approval from the FDA (U.S. drug regulators) for 
its Alzheimer’s treatment, which it expects to generate $1.2 billion per 
year. Analysts predict the stock could reach $85 within a year, but a 
critical report claims some test results might be unreliable. Risks include 
competition from larger drugmakers and high R&D costs (money spent developing 
new drugs).", 

"intermediate": "BioPharma’s FDA approval supports a bullish $85 PT (35x 
P/E), but a $300M per quarter cash burn raises dilution risks. Pipeline 
catalysts include a Parkinson’s drug entering Phase 2 trials.", 
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"expert": "BioPharma’s Alzheimer’s drug approval (FDA label includes broad 
indication) drives PT to $85 (DCF: WACC 12%, $1.2B peak sales, 55% 
probability-adjusted). Short seller claims on trial data heterogeneity 
(p=0.07 in subgroup) may limit near-term upside. With a cash runway of six 
quarters at the current burn rate, an equity offering (15-20% dilution) is 
likely. EV/sales at 5x vs. sector 7x reflects pipeline overhang." 

} 

[%user%] 

 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

 

Stock: {{$stock}} 

News Content: {{$content}} 

 

Your JSON Output: 

 

Figure 19. Stock Analysis Prompt 

The prompt includes instructions to provide the analysis in terms of three difficulty 

levels. In the ‘Easy’ level, the analysis removes jargon and industry-specific vocabulary such 

as P/E ratio or EBITDA. The ‘Intermediate’ level assumes users possess basic financial 

knowledge and skip explanations for common terms such as dividends and market 

capitalization. The ‘Expert’ level assumes the full knowledge and include every jargon and 

industry specific vocabulary. This feature enables users from different financial backgrounds 

to easily navigate the report to make informed investment decisions. 
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2.11 Stock Analysis Report Notification 

 

Figure 20. Discord Stock Analysis Report Notification 

 The system delivers the summary of the generated stock analysis report through 

Discord, providing users with timely and accessible financial insights. The notification 

system leverages Discord’s robust Webhook API. After the polling agent successfully 

geneates the report, it immediately sends HTTP request to the Discord Webhook server which 

then delivers the report to the pre-selected Discord channel. The delivered summary includes 

the news title, sentiment, published datetime, and the news summary. 

3. Results and Discussion 

 This section provides an overview of the accomplishments achieved, as well as the 

difficulties encountered and the possible resolutions. 
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3.1 Example Keyword Generator LLM 

One notable achievement to date is the successful implementation of the example 

keywords generator LLM. This module expands the user input data by generating additional 

keywords and sentences that are highly relevant to the given input (see figure below), 

enriching the input for embedding search and thereby improving its performance and 

relevance. 

For instance, when a user provides a stock name “Nvidia,” the generator produces 

5-10 relevant keywords and sentences, including examples such as “AI technology trends,” 

“Data center demand,” and “CEO Jensen Huang statements”. These outputs are crafted to 

reflect the language and topics commonly associated with financial news articles about 

“Nvidia.” 
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Figure 21. Example Keyword Generator LLM Output - The keyword generator produces a 

variety of relevant keywords and sentences to enrich the user input. 

Notably, the generated examples strongly suggest that the model has the capability to 

capture both direct and indirect relevancy. While keywords such as “graphics processing 

units” directly relate to Nvidia’s core GPU business, the model also identifies broader and 

indirectly related topics, such as “gaming industry growth” and “autonomous vehicle 

partnerships,” that heavily leverage AI chip technology. This ability to generate versatile and 

contextually aligned examples could significantly enhance the embedding search process by 

enabling more precise article filtering, ensuring that highly relevant and diverse articles are 

identified and analyzed for summary generation. 

News Article Title Matched Keyword Similarity 
Score 

Arm Holdings Reportedly Aims To Capture 
Half Of The Data Center CPU Market In 
2025 – Retail's Divided As Stock Falls 

AI technology trends 0.437 

 Nasdaq Sell-Off: After Losing Nearly $800 
Billion in Market Cap, Is Nvidia Stock a 
Buy Anymore? History Offers a Clear 
Indicator of What Could Happen Next. 

NVIDIA Corporation 0.521 

AI datacenters want to go nuclear. Too bad 
they needed it yesterday 

data center demand 0.494 

AMD Downgraded as AI Chip Struggles to 
Challenge Nvidia's Grip 

major competitor AMD 0.616 

 
Table 1. Keyword Generator LLM Result 

 The above table shows examples of matched news article for ‘Nvidia’ as well as its 

matched keyword and similarity score. It’s observed that each a diverse set of keywords 
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successfully capture various news articles, demonstrating the effectiveness of the keyword 

generation embedding search approach. 

3.2 Stock Dashboard UI 

 

Figure 22. Stock Dashboard Page 

 The stock dashboard displays a variety of stock information including the current 

stock price, previous close price, and stock price history. Also, the dashboard displays the 

“Quick Summary” where the system aggregates the recent news articles and selects the 

highest similarity score for each positive and negative to allow users to quickly grasp the 

recent trend. Lastly, a list of relevant news articles along with a one-sentence summary and 

sentiment are shown at the right panel. 
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3.3 Stock Analysis Report UI 

 

Figure 23. Stock Analysis Report Page 

The above figure displays the components of the stock analysis report. The news 

summary provides a brief overview of the article. The Key Metrics section displays a list of 

quantitative fact data extracted from the text. The system also provides the sentiment analysis 

describing the emotional tone and attitude surrounding the article. Lastly, the stock impact 

analysis is provided describing how the news article is likely to impact the stock price in the 

near future. 
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3.4 Difficulties and Possible Resolutions 

One significant difficulty encountered is the detection of the newly updated articles 

from web-scraped data. Since the scraping agent continuously scrapes a news website at short 

intervals of 1 to 5 seconds, there may be instances where no new articles are published within 

that time frame. As a result, the agent must efficiently determine whether a scraped article is 

new or has already been processed, to avoid redundant processing and waste of resources. 

To address this issue, an improved scraping mechanism is proposed. Rather than 

scraping the full content of each article at every interval, the system first retrieves only the 

published date and time of the article. If the date and time indicate that it’s indeed new, then 

the agent proceeds to process its main content. The scraping agent also tracks the latest 

scraped published date and time. This allows it to compare the timestamp of newly scraped 

articles: if the published date and time are equal to or earlier than the stored latest timestamp, 

the agent can safely skip processing the article further.  

This optimized approach could reduce unnecessary data processing and ensure that 

the system focuses only on genuinely new content, enhancing efficiency in handling real-time 

article updates. 

5. Conclusion 

 The primary objective of this project is to streamline the financial news processing for 

retail investors to mitigate the risks of delayed news processing and aid better investment 

decisions. This paper described the implementation of the LLM-based real-time financial 

news notification system, to help retail investors make informed decisions by delivering 

relevant news quickly and efficiently. The significance of this system lies in its potential 
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ability to bridge the gap between processing raw financial data and generating actionable 

insights for retail investors. By automating the identification, analysis, and delivery of 

relevant news, the system could save time and reduce the burden of manual research for 

investors. It is likely to enhance the decision-making process with predictive analysis 

performed by the system's LLMs, particularly for retail investors who lack the time or 

expertise to perform such analyses by themselves. 

 The project’s result highlights the significance of its potential to transform how 

investors interact with financial news by providing personalized information updates. The 

successful implementation of the example generator LLM, which produces highly pertinent 

example keywords and sentences tailored to user inputs, has been a critical step to achieving 

personalization. These outputs integrate with the embedding search module, a core 

component to filter out only the most relevant news articles, ensuring effective 

personalization of financial content. 

 Nevertheless, further refinement in the Keyword Generator LLM model via 

fine-tuning is required to improve the relevancy of keywords generated to the user inputs and 

the accuracy of the relevant news article selected for that user for personalization based on 

quantitiative evaluation process. Therefore, future works include fine-tuning the Keyword 

Generator LLM with a manually curated dataset and implementing the embedding search 

model to quantitatively evaluate the relevance between user inputs and the actual financial 

news chosen. These steps are crucial for improving the system's accuracy and achieving 

reliable personalization for the user. The successful implementation of these steps will keep 

significant progress toward achieving the project's objectives in personalization and 

addressing the needs of retail investors.  
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 Moreover, as the system currently relies on a limited news dataset, it’s difficult to 

generalize the system’s performance in a more real-world setting with diverse streams of 

news websites such as New York Times, Bloomberg, and Wall Street Journal. Hence, an 

important future work would be constructing a pipeline to ingest from diverse sources of 

news articles to better reflect the real-world settings. 
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