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Abstract 

In today's fast-paced financial markets, promptly identifying relevant information is crucial, 

yet retail investors are often overwhelmed by information overload due to limitations in 

existing news platforms that lack tailored articles and immediate predictive analytics. To 

address these limitations, a financial news notification system was designed to streamline 

news processing by delivering real-time, personalized news articles with tailored analyses 

curated for each user's portfolio. The project aims to reduce news processing time and aid 

decision-making of retail investors while serving the educational purpose of enhancing their 

financial literacy. The system utilizes a Keyword Generator LLM combined with embedding 

search to capture both directly and indirectly related news articles to a selected stock. 

Multiple prompt-engineered large language models (LLMs) have been implemented to 

generate concise summaries, key metrics, sentiment analysis, and multi-level stock impact 

analyses (Beginner, Intermediate, Expert). Finally, concise notifications are delivered via 

Discord. The results demonstrate a successful end-to-end implementation, with experiments 

validating the effectiveness of the filtering approach using embedding search with the 

Keyword Generator LLM, and initial user testing showing strong satisfaction (>70%) 

regarding promptness, personalization, education, and comprehension. This work presents a 

viable LLM-based solution for personalized financial news, with future work focusing on 

fine-tuning models and integrating user portfolio APIs.  
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1. INTRODUCTION 

In today’s fast-paced financial markets, promptly identifying and tracking appropriate 

information is crucial for all market participants, such as investors, traders, and financial 

institutions. Among the variety of information, one of the critical components is news articles 

that significantly impact stock prices and require immediate response. Research has shown 

that stock prices are significantly influenced by unanticipated financial news and its 

sentiment, highlighting the importance of tracking and analyzing it [1].  Hence, it is crucial 

for investors to identify and track relevant news to their portfolio and make an informed 

decision by analyzing the news to minimize risks. However, the high volume, speed, and 

real-time nature make it difficult for retail investors to process that information and make 

prompt investment decisions [1]. Those challenges span from staying up-to-date and 

constantly checking news websites for updates to cherry-picking the most relevant 

information from vast amounts of data and then analyzing it to make a decision.  

Recent advancements in LLMs have opened new possibilities for real-time data analysis and 

processing vast amounts of information. By utilizing these models with tailored prompt 

engineering, it becomes possible to filter only the most relevant news based on a user's 

portfolio and predict its potential impact. Hence, the team proposed a financial news delivery 

system that can quickly and concisely deliver only relevant information, along with a 

predictive analysis feature, to support better investment decisions and educate retail investors. 

This project's news delivery system leverages LLMs to offer enhanced personalization, 

enabling users to quickly access relevant news, make informed decisions, and directly ask the 

LLMs any questions about the news analysis. 

This project aims to achieve two primary objectives. The first objective is to provide efficient 

financial news processing and decision-making cycles for investors by increasing the density 

of the information consumed. Achieving this involves reducing the time spent identifying, 

reading, and analyzing entire news articles while increasing the number of articles consumed 

for better decision-making, ultimately reducing information asymmetry between retail and 

professional investors. The second objective is to educate retail investors by enhancing their 

understanding of market dynamics, helping them make more informed investment decisions. 

Key contributions of this work will be listed as follows: (1) a prompt‑engineered Keyword 

Generator LLM that together with embedding search, captures both direct and indirect 
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relevance signals; (2) an embedding‑search feedback loop that adapts each user’s relevance 

criteria over time; and (3) a multi‑tiered LLM analysis engine delivering summaries, 

sentiment scoring, and impact explanations at beginner, intermediate, and expert levels. 

Accordingly, the main deliverable will be a website with two key features with a real-time 

notification feature. First, a dashboard where user can input their stock tickers they wish to 

track and see their portfolio overviews. Second, a list view of relevant news articles selected 

by our LLMs, with a summary and dedicated analysis of each article. Lastly, it will have a 

chatting function with our fine-tuned LLM model that analyzes the articles so that users can 

ask questions and gain deeper insights into the analysis and prediction of the impact on the 

price. Apart from the website features, it will offer real-time notifications via WhatsApp or 

email with a one-line summary of relevant news articles, along with a prediction of stock 

price changes. The scope of the project focuses on the US stock market, with real-time news 

articles collected from the top 500 popular news resources from the NewsCatcher API.  

The remainder of this report is organized as follows: Section 2 provides more detailed project 

backgrounds. Section 3 provides detailed methodologies including the system architecture, 

LLM component implementation, and development environment used. Next, Section 4 

discusses experiments and results of the project. Finally, Section 5 presents the conclusion of 

the report, along with the desired future work.  

 

2. PROJECT BACKGROUND 

Currently, several major platforms (e.g., Seeking Alpha, Yahoo Finance) provide 

portfolio tracking and real-time alerts on major breaking news and stock price changes 

[2]-[4]. Seeking Alpha’s Portfolio Digests deliver a daily email summary of news tied to each 

user’s portfolio [2], while Yahoo Finance enables users to create custom watchlists and 

receive push notifications for breaking news and earnings reports via its mobile app and web 

interface [4]. However, they often provide basic filtering or keyword matching for relevant 

news or do not provide immediate predictive analytics to help guide investment decisions or 

educate investors based on the news. Although these platforms offer some expert analyses, it 

is mostly understandable to experts with some financial literacy.  
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These limitations lead to two key challenges that this project aims to address for retail 

investors. First, it is overwhelming for retail investors to spend time identifying relevant news 

in a flood of information and reading those articles thoroughly to make an investment 

decision without fully understanding their implications [1]. Second, the challenge lies in most 

retail investors' limited time and resources. A web traffic study showed that financial news 

readers visit three to four pages on news platforms each day and spend an average of 30 to 60 

seconds on each page [5]. This suggests that retail investors trade with limited information, 

which could lead to poor investment decisions. Given these challenges, this project 

hypothesizes the need for a financial news delivery system that can quickly and concisely 

deliver only relevant information, along with a predictive and educational analysis feature, to 

support better investment decisions and foster financial literacy. 

 

3.  METHODOLOGY  

This section discusses the implementation details of the project. It includes the data source 

and APIs used for retrieving real-time financial news data (Section 3.1), the system 

architecture with a detailed explanation of each component, including multiple large language 

models (Section 3.2), and the feedback loop for embedding search results (Section 3.3). The 

development environment and tools chosen for the project are discussed in Section 3.4, and 

the section concludes with implementation details on database design in Section 3.5.  

3.1 Data Source & APIs  

The project primarily uses the NewsCatcher API [6] to retrieve real-time global news articles 

data in JSON format. The API provides ready-to-use news from over 90,000 news sources 

worldwide. It serves as a crucial baseline for our project by providing a real-time news source 

that will be retrieved every 10 minutes. This interval was selected after load‑testing, 

considering the number of news items incoming every minute, striking a balance between 

real-timeness and efficiency of the API calls. 
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Figure 1. API call function to retrieve news data using the NewsCatcher API 

The news retrieval function in Figure 1 above calls the NewsCatcher API with various filter 

options applied. It retrieves articles published within the last 10 minutes, according to our 

10-minute polling interval. Then it filters out news in English, published in the United States 

only. Also, to prevent users from getting overwhelmed by too many news articles and prevent 

duplicate news, the function retrieves data from only the top 500 news websites ranked by 

traffic. These basic filters enable our system to serve only necessary and credible sources to 

users and to process them by our system components. Nevertheless, the function is 

configured to retrieve all news articles without any keyword filtering. As this option only 

provides a basic keyword match between the news and the keyword input, the parameter 

q="*" is set to include every source. Since our system aims to capture both direct and 

indirect matches between stock and news articles, the actual filtering to find relevant news 

articles for a specific stock will be conducted in a subsequent implementation under the 

embedding search part. Finally, this function will be called by the polling function, which 

will be discussed in the next sub-section.  
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Figure 2: News data example retrieved from the NewsCatcher API 

Figure 2 shows an example result from the NewsCatcher API call. The API provides various 

metadata, including title, published date, link to the original news, excerpt, and full content of 

the news etc. Fields such as published data and title will be served directly to the user for 

their reference. Mainly, the full content of the news, under the `summary` field, will be 

processed further for summarization and comprehensive analysis.  

On the other hand, another data source—the Refinitiv API has been utilized. Refinitiv API 

was used to fetch stock-related information, including stock ticker names, company names, 

exchanges, market capitalizations, and more. Figure 3 below illustrates an example of NYSE 

constituent data fetched from the Refinitiv API. 

Figure 3: Stock-related data example from Refinitiv API 

Among these data, stock ticker (e.g., AAPL) with a company name (e.g., Apple Inc.) has 

been used in the ‘entering stock input page’ (See Figure 4 below.), to serve a list of stocks — 

allowing users to search for the stocks they hold or wish to track. 
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Figure 4. Entering the stocks input page 

Moreover, stock exchange, sector, real-time stock prices, previous close, real-time stock 

price, and trading volume history were used to supply data in the left part of the dashboard. 

(see Figure 5 below).   
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Figure 5. Dashboard page with data from Refinitiv API at the left side 

3.2 System Architecture  

The project consists of several system components designed to provide a personalized and 

real-time financial news notification system with summaries and personalized analysis, as 

shown in Figure 6 below. 

 

 

Figure 6. System Architecture - Overview of the LLM-based Real-time Personalized 

Financial News Notification System 

 As most of the components use LLM, prompt engineering was adopted because it tailors a 

general-purpose OpenAI GPT model to specialized finance tasks without the time and cost of 

fine-tuning.  Carefully designed role instructions and a few‑shot learning were implemented, 

and ensured responses follow a strict JSON schema. 

3.2.1 Keywords Generator LLM 

First, a Keywords Generator LLM has been implemented to serve as a pre-processing step to 

find relevant news articles tailored to individual users' stocks. Upon user registration, users 

are directed to provide stock names to the backend system for personalization. When stock 
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names are provided, the keywords generator LLM expands the data by generating 10 relevant 

keywords that may reflect potential news narratives. For example, if a user provides 

‘Coca-Cola’ stock, the generated example keywords may include ‘beverage industry trends,’ 

‘sugar tax impact,’ or ‘global supply chain challenges.’ Those keywords are generated to 

improve the process of finding relevant news articles for a better personalized experience 

through the embedded search. Especially, generating example keywords enables the system’s 

embedding search model to go beyond a direct literal string match between the keyword (e.g., 

"Nvidia") and the news title or content. It allows embedding search against news content and 

all the keywords generated, enabling indirect search between them. The Keyword Generator 

LLM was instructed with a tailored prompt as below. Hence, in total, eleven keywords are 

generated per stock—ten from the Keyword Generator LLM and one from the 

ticker/company name itself, providing both direct and indirect semantic captures.  

Context: I am building a system that uses embedding search to determine if a 

news article is relevant to a specific stock (e.g., 'Coca-Cola'). The goal is 

to provide real-time stock impact analysis. While exact name matching catches 

direct mentions, the system must also identify articles indirectly related to 

the stock to be effective. For example, news about the 'beverage industry 

trends' or a major competitor like 'PepsiCo earnings' could impact 

'Coca-Cola' and should be considered relevant. 

Your Objective: Generate a set of 5-10 diverse, semantically rich keywords 

and short phrases related to the provided stock name ({{$stock_name}}). These 

terms are critical for improving embedding-based relevance detection for news 

articles. They will be embedded and used to search against news article 

embeddings. 

 

Key Requirements for Generated Terms: 

1. Capture Indirect Relevance: Go beyond the company name. Think about 

concepts, entities, and topics frequently discussed in relation to or 

affecting the target stock. Consider: 

- Industry/Sector: Broader market trends, sector-specific regulations 

(e.g., "soft drink industry", "consumer staples sector"). 

-  Major Competitors: News about direct rivals (e.g., "PepsiCo 

results", "Keurig Dr Pepper competition"). 
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-  Key Products/Brands: Significant product lines or brands owned by 

the company (e.g., "Sprite sales", "Dasani water", "Fanta marketing"). 

- Supply Chain/Partnerships: Major suppliers, distributors, or 

significant partnerships (e.g., "bottling partners", "sugar prices impact"). 

- Relevant Macro Factors: Economic or social trends strongly impacting 

the specific company/sector (e.g., "health trends beverages", "commodity cost 

inflation"). 

- Key Personnel (Less Common but possible): Sometimes news focuses on 

impactful executives (e.g., "CEO James Quincey statement"). 

2. News-Oriented: The terms should be phrases or concepts likely to actually 

appear in financial or business news articles related to the stock or its 

ecosystem. 

3. Semantically Rich: Each term should represent a distinct, meaningful 

concept relevant to the stock's performance or perception. 

4. Concise yet Effective: Aim for brevity (1-4 words typically), but 

prioritize capturing the concept accurately for embedding over extreme 

shortness. 

5. Diverse: Cover different types of relationships (competitor, industry, 

product, macro factor, etc.). 

 

Task: Based on the user-provided stock name below, generate 5-10 relevant 

terms meeting the above criteria. 

Input: User-provided Stock name: {{$stock_name}} 

Output Format Constraint: 

 You MUST return ONLY a valid JSON object containing a single key "keywords" 

with a list of strings as its value. Do NOT include any explanations, 

apologies, or introductory text outside the JSON structure. 

Your JSON Output format must be  

{ "keywords": 

 ["xxx", "yyy", …]  
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}  

Your JSON Output: 

Figure 7. Prompt given to the Keyword Generator LLM 

The prompt above emphasises three core ideas.  Firstly, it explicitly instructs the model to 

capture indirect relevance by listing industry trends, competitors, supply‑chain partners, and 

macro factors, ensuring broader coverage.  Secondly, it enforces output to be a strict JSON 

schema, which allows the following pipeline to parse results reliably without extra validation. 

Thirdly, diversity and brevity are mandated so that each keyword adds a distinct and unique 

semantic value. 

3.2.2 Embedding Model 

Next, the system converts these keywords into embeddings, which are then stored in the 

Milvus Vector Database for later use in embedding search to filter relevant financial news 

articles. Embeddings represent words or sentences as numerical vectors that capture the 

semantic relationships within text data [7]. Those embeddings are widely employed in 

embedding search due to their ability to capture and distinguish semantic nuances. This 

approach enables the determination of similarities not only between individual sentences but 

also across entire documents, making it a powerful tool for extracting relevant information. 

The Keywords Generator LLM mentioned in Section 3.2.1 enhances the stock data by 

expanding it into a more comprehensive dataset, enabling more robust embedding and 

thorough analysis. The figure 8 below illustrates a detailed embedding search process.  
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Figure 8. Embedding search system design. 

On the right side under “User Input”, the 11 generated keywords from the Keyword 

Generator LLM discussed in the previous subsection are stored in the Milvus vector database. 

On the left side, the news article’s full content provided by the polling agent is converted into 

vector embeddings in real-time. Then, the embedding search is conducted between each news 

article and the keywords stored in the vector database. The cosine similarity of two 

embedding groups is calculated to obtain a similarity score, and only news articles whose 

highest similarity score exceeds our pre-defined threshold value of 0.4 are selected as 

relevant articles to a matched keyword.  

The threshold value of 0.4 was selected as a result of qualitative analysis on the results, where 

the patterns show that irrelevant news articles such as ‘Spurs take on the Grizzlies on 3-game 

losing streak’, showed an extremely low similarity score of 0.016 when compared against the 

keyword embeddings of Nvidia Corporation. On the other hand, news directly related to 

Nvidia such as “Nasdaq Sell-Off: After Losing Nearly $800 Billion in Market Cap, Is Nvidia 

Stock a Buy Anymore?” showed a moderate similarity score between embeddings of Nvidia 

Corporation. Although it did not show a strong similarity score, upon multiple observations, 

our team has safely deduced that even directly related news did not show strong relevancy 

trends due to embedding dilution from lengthy articles' full-text. Crucially, the value was 

chosen to be 0.4 to capture indirectly relevant news that did not mention “Nvidia” at all. For 

example, news such as “Arm Holdings Reportedly Aims To Capture Half Of The Data Center 

CPU Market In 2025” showed a similarity score of 0.437. Hence, setting the threshold of 0.4 

filters out obvious irrelevant news while still admitting both direct and indirect news articles. 

The matched news article that exceeds the threshold score is considered relevant to a specific 

stock and stored in the database with a matched keyword. It is then forwarded to the News 

Summary LLM and Stock Analyzer LLM for further analysis of the news article.  

2.2.3 Polling Agent 

Simultaneously, a polling agent continuously polls the financial news from the NewsCatcher 

API with an interval of 10 minutes.  Figure 9 below illustrates the detailed workflow of the 

polling agent.  
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Figure 9. Polling agent workflow. 

The main FastAPI server runs a polling agent implemented by the APScheduler library’s 

BackgroundScheduler to poll news every 10 minutes asynchronously without blocking the 

main thread. Then, the agent pre-processes it by extracting news content from the full JSON 

response and converts the news content into embeddings.  After retrieving news articles, the 

articles undergo a series of tasks, starting from pre-processing news to extract only relevant 

data (i.e., news title & content) from the full JSON result to generate embeddings of each 

news article, perform embedding search, and passing it to subsequent Large Language 

Models to generate various analysis. Since those multiple LLM APIs exert heavy network I/O 

which may cause significant delay if processed sequentially, Python’s asynchronous functions 

through `asyncio` and `aiohttp` were utilized to process each task concurrently.  

In the following subsections, multiple LLMs will be introduced that are used to feed data for 

the news detail page, as shown in the figure below.  
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Figure 10. News Detail page showing Summary, Key Metrics, Sentiment Analysis and Stock 

Impact analysis 

  

3.2.4 Summary LLM  

First, to save users’ time reading through the full content of the selected article, the 

application was designed to provide a concise summary of the news article by implementing 

the Summary Generator LLM. The prompt given to the model is as below.  
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[%system%] 

You're a professional journalist and an expert in summarizing a news article 

into a concise and high-quality summary. 

Your Task: Generate a 3-4 sentences summary from the given news article 

content from any topic. In addition, generate a short ONE-SENTENCE summary. 

 

[IMPORTANT] 

Note that the generated keywords and examples MUST NOT BE too general. IT 

MUST BE RELATED TO the provided user input. 

{ 

 "summary": "xxx", 

 "one_sentence_summary": "yyy" 

} 

 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

News Article Content: { 

{$article_content} 

} 

Your JSON Output: 

Figure 11. News Summary LLM Prompt 

The prompt directs the system to generate a summary in a concise and high-quality manner, 

and emphasizes it to be related to the provided user input. It also enforces returning the 

summary in JSON format for storage in the database and further processing. Moreover, the 

`one_sentence_summary` is generated, allowing users to scan through a short one-line 

summary on the dashboard and choose what to read further.  
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3.2.5 Key Metrics LLM  

Followed by the summary, key metrics from the news article were extracted by the large 

language model. This allows users to scan through quantitative key metrics, including 

numerical values and financial indicators relevant to the company or market mentioned that 

may impact the stock price. This serves as a useful tool especially for experienced investors, 

who can quickly grasp the current topics discussed in the article through the factual, 

quantitative data. Figure 12 below illustrates the prompts given to implement Key Metrics 

LLM. 

To guide the model further, our system employed few‑shot learning where an example 

input‑output pair is embedded in the prompt under [%user%] and [%assistant%], feeding the 

full article text and the desired JSON output. These exemplars teach the LLM the required 

extraction pattern without additional fine‑tuning, reducing formatting errors and ensuring the 

model’s consistency. 

[%system%] 

You’re a professional financial data extraction assistant and an expert in 

analyzing news articles and generating key financial metrics in the news 

article. Focus on numerical values related to the company’s financial 

performance, stock movement, and market reactions. 

 

Your Task: Extract key financial metrics from the provided financial news 

article. Focus on numerical values and financial indicators relevant to the 

company or market mentioned. 

 

[IMPORTANT] 

Note that the key metrics MUST NOT BE generated on your own. It must be 

consolidated from the user input. Restrict your each response into one short 

concise sentence. Return 1 to 5 key metrics, ensuring each is short and 

concise while covering all critical financial indicators. If there’s no key 

metrics, return empty list in JSON format given. 

 

[%user%] 
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Article: NVIDIA Co. (NASDAQ:NVDA – Get Free Report)'s stock price traded down 

1.2% on Thursday after an insider sold shares in the company. The stock 

traded as low as $131.80 and last traded at $135.34. 225,240,656 shares 

traded hands during trading, a decline of 43% from the average session volume 

of 395,069,875 shares. The stock had previously …  

 

[%assistant%] 

{ 

  "key_metrics": [ 

    "Stock traded as low as $131.80; last price at $135.34; previous close 

was $136.92.", 

    "Volume: 225,240,656 shares, 43% below average of 395,069,875 shares.", 

    "Insider transaction: 716 shares sold at $142.00 for $101,672.00; 

director's holding decreased by 3.47% to 19,942 shares.", 

    "Quarterly earnings: Revenue of $35.08B vs. estimate of $33.15B; EPS 

reported at $0.81, beating the $0.69 consensus by $0.12.", 

    "Valuation: Market cap of $3.39T; P/E ratio of 54.41; Debt-to-Equity 

ratio of 0.13; Beta of 1.66.", 

    "Corporate action: Board authorized a $50B stock repurchase program." 

  ] 

} 

 

Extraction Criteria: 

1.  Company Performance: Revenue, Net Income, Earnings Per Share (EPS), 

Year-over-Year (YoY) or Quarter-over-Quarter (QoQ) changes, Operating Profit, 

Gross Margin, etc. 

2.  Stock Market Metrics: Stock price changes (e.g., % increase or decrease), 

pre-market or after-hours movement, analyst target price updates, trading 

volume, market capitalization, etc. 

3.  Financial Ratios: Price-to-Earnings (P/E) ratio, Debt-to-Equity (D/E) 

ratio, Dividend Yield, Free Cash Flow, etc. 
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4.  Macroeconomic Indicators (if applicable): Interest rate impact, inflation 

rate, GDP growth, unemployment rate. 

[%user%] 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

Return the key metrics as concise, well-formatted short sentences. 

 

Article: {{$content}} 

Your JSON Output: 

Figure 12. Key Metrics LLM Prompt 

The prompt also contains a system message that defines the model’s role as a “professional 

financial data‑extraction assistant” and explicit instructions limiting each response to 1–5 

concise sentences in JSON format, ensuring consistent and accurate outputs. 

3.2.6 Sentiment Analysis LLM 

Followed by the Key Metrics LLM, a Sentiment Analysis LLM has been implemented. The 

following figure illustrates the prompt given to the large language model.  

 
[%system%] 

You're a professional financial expert who specializes in sentiment analysis 

of a financial news article related to a provided stock name. 

 

The sentiment analysis includes the following items. 

 

1) One of [Strong Negative, Negative, Neutral, Positive, Strong Positive]. 

  - where strong negative means the given news article or the contents of the 

news article are high indicators of the given stock's price will fall down in 

a future. 

  - where strong positive means the given news article or the contents of the 

news article are high indicators of the given stock's price will go up in a 

future 
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  - Neutral means that it's not reasonable or there's no significant 

indicator of the stock price from the news article. 

2) Insightful, factual, reasonable, logical, detailed analysis & rationale & 

proofs & evidence of your claim from item (1). 

  Do not merely give meaningless, verbose, no-depth, abstract reasons. Give 

DEFINITIVE PROOFS OR EVIDENCE OR RATIONALE to your claim in a structured 

manner. 

3) Also, provider a "SENTIMENT SCORE" ranging from [-5 ~ 5] (inclusive) to 

indicate how positive/negative the given news is. 

  - 5 means Strong positive, and -5 means Strong Negative, and 0 means 

Neutral. 

  - Give it as a floating-point number. 

 

Make sure that your sentiment analysis output is CONCISE AND INSIGHTFUL. It 

should not be verbose and long. Must be around 3~4 sentences depending on the 

situation. 

 

In addition, you will be provided a specific stock name that you must analyze 

the impact with. 

Your sentiment analysis of the news article must be done in consideration of 

this given stock name. 

 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

 

You must return response in the following "JSON" format (only JSON) 

{ 

   "sentiment": "xxx", // item (1) - either Strong_Negative, Negative, 

Neutral, Positive, Strong_Positive 

   "sentiment_score": xx, 

   "analysis": "..." // item (2) 
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} 

 

Given stock name: {{$stock_name}} 

News Title: {{$title}} 

News Content: {{$content}} 

 

Your JSON Output: 

Figure 13. Sentiment Analysis LLM prompt 

According to the prompt above, the model receives the stock name, news title, and news full 

content to generate 3 outputs. Firstly, it generates a `sentiment` label ranging from [Strong 

Negative, Negative, Neutral, Positive, Strong Positive] scale that captures the overall tone of 

the article toward the stock, letting users a to gauge the sentiment at a glance. Secondly, 

`sentiment_score`, which is a numerical  floating-point value between -5 and 5 that quantifies 

the sentiment. The quantified value will be used later in the dashboard UI to deliver “Quick 

Summary”, where the news articles are divided into positive and negative news and sorted in 

descending order to provide the headline of the most impactful news article, which means 

having highest/lowest sentiment score. Lastly, a concise sentiment analysis of the news article 

is generated in relation to the specific stock name given. The model was mandated to 

generate only insightful, factual, reasonable, logical, detailed analysis & rationale & proofs & 

evidence in generating the analysis, to deliver only impactful analysis to the user. Combined 

with a `sentiment` tag, the analysis was instructed to be concise and insightful to prevent 

users from spending too much time reading the analysis but grasp the takeaway quickly.  

3.2.7 News Impact Analysis LLM 

Lastly, the News Impact Analysis LLM has been implemented with a curated prompt (see 

Figure 14 below). It goes beyond the sentiment analysis by focusing on generating an 

analysis on the actual possible impact of the news article on the stock’s price. 

[%system%] 
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You are a stock market news analysis agent that evaluates how news impacts 

stock prices, catering to retail investors with three expertise levels (easy, 

intermediate, expert). 

 

The news could be discussing any kind of topic, but related to the stock. The 

key task is to find an impact to stock price of this news, and possibly 

provide a logical explaination behind the stock price prediction in English. 

 

You will also be given a stock name. Create your stock impact analysis report 

towards the given stock. 

 

<Requirements> 

 

1. Summary of the news is not compulsory, mainly discuss the implication to 

the stock price and logical explanation behind it. 

2. If the news has negligible impact to stock price then you can just give 

some logical explanation of why it is not important. 

3. For the analysis, please find below instructions for your reference. It 

would be better if you can provide industry-specific viewpoints, as well. 

4. **Easy**: Explain all industry-specific/technical/financial terms (e.g., 

P/E ratio, EBITDA) in simple language. Give full defintion of the terms below 

the analysis. better 

5. **Intermediate**: Assume basic financial knowledge; skip explanations for 

common terms (e.g., dividends, market capitalization). Better to give some 

explaination of complex technicals below the analysis. 

6. **Expert**: Use advanced knowledge (e.g., discounted cash flow, beta 

volatility and many others) and financial ratios without much explanations. 

 

<Output Format> 

Please return a JSON format like the following: 

 

20 



 

{ 

"easy": "..." 

"intermediate": "..." 

"expert": "..." 

} 

 

[%user%] 

Example 1: Biotech FDA Approval 

 

Stock: BioPharma Inc. 

 

News Content: 

BioPharma Inc. receives FDA approval for its Alzheimer’s drug, projects $1.2B 

in peak annual sales, and sets a 12-month price target of $85. A short seller 

report warns of trial data inconsistencies. 

 

[%assistant%] 

{ 

"easy": "BioPharma Inc. got approval from the FDA (U.S. drug regulators) for 

its Alzheimer’s treatment, which it expects to generate $1.2 billion per 

year. Analysts predict the stock could reach $85 within a year, but a 

critical report claims some test results might be unreliable. Risks include 

competition from larger drugmakers and high R&D costs (money spent developing 

new drugs).", 

"intermediate": "BioPharma’s FDA approval supports a bullish $85 PT (35x 

P/E), but a $300M per quarter cash burn raises dilution risks. Pipeline 

catalysts include a Parkinson’s drug entering Phase 2 trials.", 

"expert": "BioPharma’s Alzheimer’s drug approval (FDA label includes broad 

indication) drives PT to $85 (DCF: WACC 12%, $1.2B peak sales, 55% 

probability-adjusted). Short seller claims on trial data heterogeneity 
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(p=0.07 in subgroup) may limit near-term upside. With a cash runway of six 

quarters at the current burn rate, an equity offering (15-20% dilution) is 

likely. EV/sales at 5x vs. sector 7x reflects pipeline overhang." 

} 

[%user%] 

 

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE. 

 

Stock: {{$stock}} 

News Content: {{$content}} 

 

Your JSON Output: 

Figure 14. News Impact Analysis LLM prompt 

It is prompted to generate the news analysis in 3 different difficulty levels - Easy, 

Intermediate, and Expert. Each analysis includes a prediction of how the news article might 

impact the stock price. A cricual part of this model is that it generates this three-tired analysis 

to serve users who may have different financial literacy. Some users may not recognize 

financial terms that appear in the news article such as the P/E ratio and understand why it 

matters, while others can grasp them easily. Therefore,  to serve our objective in educating 

novice retail investors, the model is instructed to provide three different levels of analysis. 

Novice retail investors can build financial knowledge through the explanation on 

industry-specific/technical/financial terms (e.g., P/E ratio, EBITDA) in simple language. By 

tailoring depth to user needs, the system delivers actionable guidance and simultaneously 

fosters financial literacy. 

3.2.8 Delivery via Discord Notification 

As the final step, after generating all analyses and summaries by the LLMs discussed, a 

concise notification for news articles curated with sentiment and summary is delivered 

automatically via Discord, enabling a real-time and personalized notification on relevant 

news altogether.  This is achieved by using Discord’s webhook API, where our system sends 
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an HTTP request to the Discord Webhook server that sends the notification to the selected 

Discord channel. This allows delivering real-time and personalized notifications on relevant 

news to each user. 

3.3. Feedback for Embedding Search Results 

Another core feature to support better relevancy matching by the embedding search is 

providing users with a feedback button to receive feedback on whether the matched article 

was in fact relevant to the user’s stock. Since the concept of relevancy can be subjective, 

especially when articles is indirectly related to stock name where it do not explicitly mention 

the company name but are still contextually related, the feedback loop has been implemented 

to address this limitation.  

 

Figure 15. Stock detail page with feedback loop feature.  

The UI/UX has been implemented in a simple way so that the user is able to click either 

“Yes” or “No” in response to the question “Did you find  it relevant to the stock?” in order to 

simplify the feedback collection process for better user experience.  

Initially, the team experimented with adjusting the similarity score threshold value to reflect 

user feedback, for example, making it higher by 0.1 when “No” button was clicked. However, 

this method was too general and ineffective, as it applied changes to all keywords at once 

even though the user might have felt that only the specific keyword matched was irrelevant. 

Therefore, to implement the feedback loop without affecting other relevant matches, the 

current implementation solves this by selectively removing only the matched keyword vector, 

enabling a more precise personalization. 

When the user clicks “No”, the system proceeds to delete that keyword vector for the 

user‑stock pair in the Milvus vector database. This means the user didn’t find the article 

captured by that specific keyword was relevant to the sstock, hence removing the keyword 

will ensure that future incoming news will not be captured by that keyword. After the 
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removal, the Keyword Generator LLM will re-generate another keyword to maintain a total 

of 10 keyword vectors.  

This process allows each individual user to maintain their own list of relevant keywords 

related to each stock they own, reflecting their subjectivity in viewing the relevancy, thus 

giving the most possible personalization to each user based on unique interpretation of what 

is relevant. 

3.4 Engineering choices 

 

Figure 16. Development tools used: FastAPI, MySQL, React, Milvus, HuggingFace, and 

OpenAI, in that order. 

The main backend system of this project has been implemented using FastAPI and Python. 

Since the system heavily utilizes large language models, the components related to the LLMs 

were built with FastAPI and Python too, as their implementation is best supported the best in 

a Python environment.  FastAPI also provides fast and high performance, supported by the 

Asynchronous Server Gateway Interface (ASGI) which operates on a single-threaded model, 

providing high performance. 

MySQL was used to store user data, stock information, news articles and their corresponding 

analysis and key metrics. A relational database has been utilized for efficient storage of 

structured data with a concrete schema. 
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The Frontend was implemented using React, leveraging its strong ecosystem and reusability 

of components to build a dynamic single-page application. For example, the dashboard UI 

consists of multiple reusable components, such as news card list.  

On the other hand, Milvus was selected as a vector database due to its high performance and 

ease of use by providing abstraction. HuggingFace and OpenAI were chosen for their 

cost-effectiveness and State-of-the-Art Models supported by a robust ecosystem. 

The server will be deployed on Amazon Web Services (AWS) to ensure high reliability and 

scalability.  

3.5 Database Design  

 

Figure 17. Entity-Relationship Diagram of the system database schema 

Figure 17 above illustrates the relational database schema designed to support the core 

functionalities of the backend system. 

The user information, including username and password is stored in the `user` table, while 

stock-related information fetched from the Refinitiv API is stored in the `stock_info` table, 

which includes the stock ticker and stock name. The list of stocks shown on the entering user 

stock page (see Figure 4) is retrieved from this table. 

 The intermediate `user_stock` table represents the many-to-many relationship between users 

and stocks, allowing each user to subscribe to multiple stocks and vice versa. This structure 
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supports personalization by maintaining a unique `user_stock_id` for each user-stock pair, 

which is later used to associate matched news. 

The `news` table is central to the system, storing all matched articles per `user-stock`. It 

includes fields such as title, author, publisher, link, and published_date as raw metadata, and 

also stores LLM-generated content like summary, sentiment analysis, stock impact analysis, 

etc.  

Importantly, each news entry records the `matched_keyword`, which is essential for the 

feedback loop discussed in Section 3.3. If a user clicks “No” on the feedback, the system 

identifies the keyword associated with that article and deletes its corresponding vector from 

the Milvus database.  

Lastly, since each news article can produce up to 5 metrics, the `metric` table was added to 

represent a one-to-many relationship between news and metrics.  

This schema supports the personalized workflow of the whole system, from user-stock 

interest tracking to news retrieval, analysis, and saving them for efficient lookup and reuse. 

 

4. RESULTS & DISCUSSION 

This section discusses the results of the project including the frontend implementation 

discussed from the user's perspective (Section 4.1), as well as the results and experiments 

from the LLMs discussed in the methodology sections. (Section 4.2). 

4.1 Frontend Result 

This section discusses the results of the frontend implementation, along with some details of 

the backend implementation.  
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4.1.1 Sign-up page 

 

Figure 18. Sign-up page 

First, the sign-up page has been implemented. It allows a simple and straightforward sign-up 

process with a username and password.  

4.1.2 Sign-in page 

 

Figure 19. Sign In page 
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After a successful sign-up, the user is directed to sign in. Upon user sign-in, a JSON Web 

Token (JWT) is issued and added in the `Authorization` Header of every subsequent HTTP 

request. The JWT contains the userId of the user using the system, enabling the system to 

always identify the user using the header. The userId is being used to identify which user is 

using the app across all API calls, to fetch their personalized news curation.  

4.1.3 Stock Input page 

Upon the first sign-in, users are directed to select the stocks they wish to track. Figure 20 

shows the page where the user can choose or search from the drop-down list of all the stocks 

listed on the New York Stock Exchange.  

 

Figure 20. User stock input page with stock lists  

Users can choose multiple stocks, allowing them to track their various portfolio holdings 

effectively. Figure 21 below shows the same page after the user has chosen multiple stocks.  
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Figure 21. User stock input page with stocks selected 

As demonstrated in Figure 21 above, users can choose multiple stocks and easily remove 

them. Additionally, when the user chooses a specific stock, that stock will no longer be 

visible in the news drop-down list for a better user experience. When the user removes the 

selection, it reappears in the list.  

 

When the user clicks the “Confirm” button, the process of generating relevant keywords 

begins. The Keyword Generator LLM discussed in the methodology section (see Section 

3.2.1) is triggered and generates 10 keywords per stock, which are stored in the Milvus vector 

database along with the `user_stock_id` for personalized news curation. 

4.1.4 Dashboard Page 

Once the user confirms their stock selections, they are redirected to the main dashboard page.  

Several experiments and improvements were made to the dashboard page, including a major 

UI/UX redesign. Based on iterative feedback, we optimized the layout to enhance readability 

and reduce the time required to interpret news content. 

The initial version had a top-down layout in dark mode, where news articles appeared at the 

bottom of the page. However, this design made it difficult for users to quickly grasp relevant 

content (See Figure 22 below.) 
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Figure 22. Initial dashboard page design 

To enhance readability and streamline user experience, the dashboard was restructured into a 

left-right layout. The left section of the revised dashboard page (See Figure 23 below) 

displays output of the Refinitiv API integration, presenting key stock-related information 

including exchange, sector, stock price, and previous close. The stock price history and 

trading volume history were visualized through charts, providing users with an all-in-one 

platform where they can monitor relevant news alongside corresponding price and volume 

movements. Also, the “Personalized News Curation” section was moved to the right part 

from the bottom since the main focus of TradeBox is to provide users with personalized news 

curation with analysis. 
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Figure 23. Revised Dashboard page  

Meanwhile, the right section focuses on personalized news curation, including real-time 

articles matched through embedding search. To help users quickly identify high-impact 

updates, news articles classified with strong_positive or strong_negative sentiment were 

visually highlighted using green and red background colors, respectively. 

Moreover, a “Quick Summary” section was implemented at the top-right corner of the 

dashboard to emphasize the key positive and negative news on the selected stock. (See Figure 

23 above). Here, the `sentiment score` generated by the Sentiment Analyzer LLM was 

utilized to automatically choose the top 2 news articles with the highest and lowest sentiment 

score, displaying them under “Key Positive News” and “Key Negative News”.  
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Figure 24. Choosing a stock among multiple stocks  

Finally, multi-stock functionality has been developed. Users can seamlessly change the stock 

they are currently viewing, which dynamically updates the dashboard content to show only 

the selected stock’s information and news curation.  

4.1.5 News Detail Page 

Lastly, clicking the “See Detail” button on each news article opens a dedicated news detail 

page (See Figure 25 below). 

 

Figure 25. News Detail Page 

 This page provides users with a comprehensive, yet effectively concise information 

including summary, key metrics, sentiment analysis, and stock impact analysis, which are 

generated by Large Language Models discussed in the Methodology section (See section 
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3.2). The page has a side-by-side panel structure, where the left panel allows users to browse 

articles and the right panel displays detailed content, making it easy for users to navigate 

through multiple news articles.  

In the “Stock Impact Analysis” section, users can select the desired level of explanation from 

Beginner, Intermediate, or Expert based on their financial literacy. The analysis content 

dynamically updates without any delay of API calls or page reload, offering a seamless user 

experience. 

Lastly, at the bottom-right corner, a feedback component allows users to indicate whether 

they found the article relevant to the stock. Based on the response, background logic is 

triggered as described in the feedback loop mechanism (see Section 3.3), enabling the system 

to refine future recommendations. 

4.1.6 Real-time Notification via Discord Channel 

Simultaneously, every news article that appears in the dashboard news curation is sent to the 

user through a designated Discord channel. This enables users to receive timely updates 

without needing to manually revisit our website to check for fresh new articles. 
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Figure 26. Discord Notification for Nvidia stock  

Figure 26 shows an example of the notification related to Nvidia. The content of the 

notification includes the stock name, published date, sentiment, news title and a summary, 

which is selected to provide a brief overview of the news at a glance. Each message also 

contains a clickable link that redirects the user to the corresponding News Detail Page of the 

system, allowing for seamless access to full analysis if desired. 

4.2  Results & Experiment on Embedding Search and Keyword Generator LLM  

This section discusses the experiment and results of implementing the keyword Geneator 

LLM and the embedding search.  
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Figure 27. Results of Keywords generated from the Keyword Generator LLM 

Figure 27 above demonstrates the output of the Keyword Generator LLM implemented (See 

section 3.2.1 for implementation details). For the stock “Nvidia Corporation”, semantically 

relevant keywords such as ‘AI technology trends’, ‘graphics processing units’, and ‘data 

center demand’ were generated.  

A qualitative analysis on the keywords generated has been conducted with validation from 

peers, along with the quantitative evaluation based on the similarity scores between generated 

keywords and news articles. These results demonstrated successful implementation of the 

embedding search model and Keyword Generator LLM, confirming their effectiveness (see 

Table 1 below). 

Initially, a higher similarity score threshold (0.6) was tested, but it excluded many indirectly 

or contextually relevant articles that didn’t mention the stock name directly. Based on 

experimental results, the threshold was adjusted to 0.4 which achieved a better balance that 
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retrieved a wider range of indirectly relevant news articles while effectively excluding 

unrelated ones. 

News Article Title Matched Keyword Similarity Score 

Arm Holdings Reportedly Aims To Capture 

Half Of The Data Center CPU Market In 

2025 – Retail's Divided As Stock Falls 

AI technology trends 0.437 

 Nasdaq Sell-Off: After Losing Nearly $800 

Billion in Market Cap, Is Nvidia Stock a 

Buy Anymore? History Offers a Clear 

Indicator of What Could Happen Next. 

NVIDIA Corporation 0.521 

AI datacenters want to go nuclear. Too bad 

they needed it yesterday 

data center demand 0.494 

AMD Downgraded as AI Chip Struggles to 

Challenge Nvidia's Grip 

major competitor AMD 0.616 

‘Spurs take on the Grizzlies on 3-game 

losing streak’ 

-  0.016 

Table 1. Results of Embedding Search against keywords generated 

Table 1 above summarizes the results of the embedding search between five news articles and 

the keywords generated for Nvidia. The results demonstrate how the model captures not only 

directly relevant articles but also indirectly related ones. For instance, the first and third 

articles do not mention “Nvidia” explicitly but still receive a similarity score of 0.437 and 

0.494, respectively.  

Despite the score being lower than directly matched articles (e.g., the second and fourth 

articles with 0.521 and 0.616 respectively), the margin is not significant, suggesting the 

effectiveness of the model in identifying semantically or indirectly relevant content. In 

contrast, clearly irrelevant articles, such as the last one, showed a very low similarity score of 
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0.016. This supports the decision to use 0.4 as a threshold for identifying relevant news, 

possibly eliminating risks in delivering totally irrelevant articles.  

Moreover, the matched keywords were accurate and contextually appropriate. For example, 

the news article titled “Arm Holdings Reportedly Aims To Capture Half Of The Data Center 

CPU Market…” was matched with “AI technology trends,” and the article “AI datacenters 

want to go nuclear…” was matched with “data center demand.” 

These results demonstrate that the Keyword Generator LLM can produce meaningful, 

semantically aligned keywords that enable the system to detect both directly and indirectly 

relevant news articles through embedding search.  

 

5. CONCLUSION & FUTURE WORKS 

5.1 Conclusion & Findings  

TradeInbox addressed the challenges retail investors face in consuming and analyzing the 

high volume of real-time financial news. Existing platforms often lack personalization or 

immediate and actionable analysis. To address these limitations, an LLM-based Real-time 

Personalized Financial News Notification System has been developed, which is designed to 

efficiently filter, summarize, and analyze relevant news tailored to individual user stock 

portfolios, aiming to reduce information asymmetry and enhance financial literacy by 

educating them through tailored educational analysis.  

The findings confirm the successful implementation and effectiveness of the core 

components. The prompt-engineered Keyword Generator LLM, combined with embedding 

search using a 0.4 similarity threshold, identified both directly and indirectly relevant articles. 

The successful implementation and integration of multiple LLMs to generate concise 

summaries, key metrics, sentiment analysis, and multi-tiered stock impact analysis provided a 

detailed and educational news analysis function. As a result, initial user testing yielded 

positive results, with over 70% user satisfaction reported attributed by participants to the 

system's prompt delivery (via real-time scraping and embedding search), personalization, 

educational value (from multi-level analysis), and comprehension (aided by the intuitive 
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UI/UX). The functional frontend implementation, real-time Discord notifications, and the 

user-driven feedback mechanism demonstrate a viable end-to-end system. 

In conclusion, TradeInbox demonstrates the practical application of Large Language Models 

in creating a personalized financial news system. The positive user feedback supports the 

finding that TradeInbox effectively addresses the core objectives by providing timely, 

relevant, and analyzed information. The system's architecture which combines multiple 

LLM-driven contents with Milvus vector database search and user feedback, provides a 

robust foundation for further development in personalized financial news processing. 

5.2 Future Works 

The current system successfully delivers core functionality, but a few improvements can 

enhance the system's performance and overall user experience. 

Firstly, fine-tuning the Keyword Generator LLM with a larger, curated financial dataset, 

could enhance the quality of the keywords generated beyond the current prompt-engineering 

approach. This approach could improve the performance of embedding search, especially in 

capturing indirect and semantically related news articles to a specific stock.  

Secondly, enhancing the feedback loop mechanism beyond simple keyword deletion to 

dynamically adjust relevance scoring could lead to better long-term personalization and better 

user experience.  

Lastly, integrating the Trading Vendor API by connecting it to automatically pull users’ 

portfolio holdings data instead of manually entering stock names could enhance the user 

experience and provide more meaningful data in the dashboard, such as portfolio holding 

changes. 
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