

THE UNIVERSITY OF HONG KONG

FITE4801/COMP4801

Final Report

Kim Taehyun (3035741330)

21 April 2025

Topic

TradeInbox: LLM-based Real-time Personalized Financial News Notification System

Abstract

In today's fast-paced financial markets, promptly identifying relevant information is crucial,

yet retail investors are often overwhelmed by information overload due to limitations in

existing news platforms that lack tailored articles and immediate predictive analytics. To

address these limitations, a financial news notification system was designed to streamline

news processing by delivering real-time, personalized news articles with tailored analyses

curated for each user's portfolio. The project aims to reduce news processing time and aid

decision-making of retail investors while serving the educational purpose of enhancing their

financial literacy. The system utilizes a Keyword Generator LLM combined with embedding

search to capture both directly and indirectly related news articles to a selected stock.

Multiple prompt-engineered large language models (LLMs) have been implemented to

generate concise summaries, key metrics, sentiment analysis, and multi-level stock impact

analyses (Beginner, Intermediate, Expert). Finally, concise notifications are delivered via

Discord. The results demonstrate a successful end-to-end implementation, with experiments

validating the effectiveness of the filtering approach using embedding search with the

Keyword Generator LLM, and initial user testing showing strong satisfaction (>70%)

regarding promptness, personalization, education, and comprehension. This work presents a

viable LLM-based solution for personalized financial news, with future work focusing on

fine-tuning models and integrating user portfolio APIs.

i

Acknowledgments

I would like to express my gratitude to our final-year project supervisor, Dr. Chow Ka Ho, for

his expertise, guidance, and support throughout the project. I also want to thank our

CAES9542 lecturer, Mr. Gagandeep Singh, who gave invaluable lessons on writing technical

reports. Many thanks to my teammates for their contribution and commitment to the project.

Lastly, I am also grateful to friends and seniors who shared their insights and feedback on the

project.

ii

Table of Contents

1. INTRODUCTION___1

2. PROJECT BACKGROUND__ 2

3. METHODOLOGY__ 3

3.1 Data Source & APIs__ 3

3.2 System Architecture__ 7

3.2.1 Keywords Generator LLM__ 8

3.2.2 Embedding Model__10

2.2.3 Polling Agent___ 12

3.2.4 Summary LLM__ 14

3.2.5 Key Metrics LLM__ 15

3.2.6 Sentiment Analysis LLM__ 17

3.2.7 News Impact Analysis LLM__20

3.2.8 Delivery via Discord Notification__23

3.3. Feedback for Embedding Search Results__ 23

3.4 Engineering choices___ 24

3.5 Database Design__ 26

4. RESULTS & DISCUSSION__ 27

4.1 Frontend Result___27

4.1.1 Sign-up page__ 28

4.1.2 Sign-in page__ 29

4.1.3 Stock Input page___ 29

4.1.4 Dashboard Page__31

4.1.5 News Detail Page__ 33

4.1.6 Real-time Notification via Discord Channel__________________________________34

4.2 Results & Experiment on Embedding Search and Keyword Generator LLM____________ 35

5. CONCLUSION & FUTURE WORKS___ 38

5.1 Conclusion & Findings___38

5.2 Future Works__ 39

iii

List of Figures

Figure 1. API call function to retrieve news data using the NewsCatcher API___________________ 4

Figure 2: News data example retrieved from the NewsCatcher API___________________________ 5

Figure 3: Stock-related data example from Refinitiv API___________________________________ 5

Figure 4. Entering the stocks input page___6

Figure 5. Dashboard page with data from Refinitiv API at the left side_________________________7

Figure 6. System Architecture - Overview of the LLM-based Real-time Personalized Financial News

Notification System___7

Figure 7. Prompt given to the Keyword Generator LLM___________________________________ 10

Figure 8. Embedding search system design.___ 11

Figure 9. Polling agent workflow.___12

Figure 10. News Detail page showing Summary, Key Metrics, Sentiment Analysis and Stock Impact

analysis___ 14

Figure 11. News Summary LLM Prompt___ 15

Figure 12. Key Metrics LLM Prompt__ 17

Figure 13. Sentiment Analysis LLM prompt__ 19

Figure 14. News Impact Analysis LLM prompt__ 22

Figure 15. Stock detail page with feedback loop feature.___________________________________23

Figure 16. Development tools used: FastAPI, MySQL, React, Milvus, HuggingFace, and OpenAI, in

that order.__25

Figure 17. Entity-Relationship Diagram of the system database schema_______________________26

Figure 18. Sign-up page__ 28

Figure 19. Sign In page___ 29

Figure 20. User stock input page with stock lists___ 30

Figure 21. User stock input page with stocks selected_____________________________________ 30

Figure 22. Initial dashboard page design___ 31

Figure 23. Revised Dashboard page___ 32

Figure 24. Choosing a stock among multiple stocks_______________________________________33

Figure 25. News Detail Page___34

Figure 26. Discord Notification for Nvidia stock___ 35

Figure 27. Results of Keywords generated from the Keyword Generator LLM_________________ 36

List of Tables

Table 1. Results of Embedding Search against keywords generated___________________ 37

v

1. INTRODUCTION

In today’s fast-paced financial markets, promptly identifying and tracking appropriate

information is crucial for all market participants, such as investors, traders, and financial

institutions. Among the variety of information, one of the critical components is news articles

that significantly impact stock prices and require immediate response. Research has shown

that stock prices are significantly influenced by unanticipated financial news and its

sentiment, highlighting the importance of tracking and analyzing it [1]. Hence, it is crucial

for investors to identify and track relevant news to their portfolio and make an informed

decision by analyzing the news to minimize risks. However, the high volume, speed, and

real-time nature make it difficult for retail investors to process that information and make

prompt investment decisions [1]. Those challenges span from staying up-to-date and

constantly checking news websites for updates to cherry-picking the most relevant

information from vast amounts of data and then analyzing it to make a decision.

Recent advancements in LLMs have opened new possibilities for real-time data analysis and

processing vast amounts of information. By utilizing these models with tailored prompt

engineering, it becomes possible to filter only the most relevant news based on a user's

portfolio and predict its potential impact. Hence, the team proposed a financial news delivery

system that can quickly and concisely deliver only relevant information, along with a

predictive analysis feature, to support better investment decisions and educate retail investors.

This project's news delivery system leverages LLMs to offer enhanced personalization,

enabling users to quickly access relevant news, make informed decisions, and directly ask the

LLMs any questions about the news analysis.

This project aims to achieve two primary objectives. The first objective is to provide efficient

financial news processing and decision-making cycles for investors by increasing the density

of the information consumed. Achieving this involves reducing the time spent identifying,

reading, and analyzing entire news articles while increasing the number of articles consumed

for better decision-making, ultimately reducing information asymmetry between retail and

professional investors. The second objective is to educate retail investors by enhancing their

understanding of market dynamics, helping them make more informed investment decisions.

Key contributions of this work will be listed as follows: (1) a prompt‑engineered Keyword

Generator LLM that together with embedding search, captures both direct and indirect

1

relevance signals; (2) an embedding‑search feedback loop that adapts each user’s relevance

criteria over time; and (3) a multi‑tiered LLM analysis engine delivering summaries,

sentiment scoring, and impact explanations at beginner, intermediate, and expert levels.

Accordingly, the main deliverable will be a website with two key features with a real-time

notification feature. First, a dashboard where user can input their stock tickers they wish to

track and see their portfolio overviews. Second, a list view of relevant news articles selected

by our LLMs, with a summary and dedicated analysis of each article. Lastly, it will have a

chatting function with our fine-tuned LLM model that analyzes the articles so that users can

ask questions and gain deeper insights into the analysis and prediction of the impact on the

price. Apart from the website features, it will offer real-time notifications via WhatsApp or

email with a one-line summary of relevant news articles, along with a prediction of stock

price changes. The scope of the project focuses on the US stock market, with real-time news

articles collected from the top 500 popular news resources from the NewsCatcher API.

The remainder of this report is organized as follows: Section 2 provides more detailed project

backgrounds. Section 3 provides detailed methodologies including the system architecture,

LLM component implementation, and development environment used. Next, Section 4

discusses experiments and results of the project. Finally, Section 5 presents the conclusion of

the report, along with the desired future work.

2. PROJECT BACKGROUND

Currently, several major platforms (e.g., Seeking Alpha, Yahoo Finance) provide

portfolio tracking and real-time alerts on major breaking news and stock price changes

[2]-[4]. Seeking Alpha’s Portfolio Digests deliver a daily email summary of news tied to each

user’s portfolio [2], while Yahoo Finance enables users to create custom watchlists and

receive push notifications for breaking news and earnings reports via its mobile app and web

interface [4]. However, they often provide basic filtering or keyword matching for relevant

news or do not provide immediate predictive analytics to help guide investment decisions or

educate investors based on the news. Although these platforms offer some expert analyses, it

is mostly understandable to experts with some financial literacy.

2

These limitations lead to two key challenges that this project aims to address for retail

investors. First, it is overwhelming for retail investors to spend time identifying relevant news

in a flood of information and reading those articles thoroughly to make an investment

decision without fully understanding their implications [1]. Second, the challenge lies in most

retail investors' limited time and resources. A web traffic study showed that financial news

readers visit three to four pages on news platforms each day and spend an average of 30 to 60

seconds on each page [5]. This suggests that retail investors trade with limited information,

which could lead to poor investment decisions. Given these challenges, this project

hypothesizes the need for a financial news delivery system that can quickly and concisely

deliver only relevant information, along with a predictive and educational analysis feature, to

support better investment decisions and foster financial literacy.

3. METHODOLOGY

This section discusses the implementation details of the project. It includes the data source

and APIs used for retrieving real-time financial news data (Section 3.1), the system

architecture with a detailed explanation of each component, including multiple large language

models (Section 3.2), and the feedback loop for embedding search results (Section 3.3). The

development environment and tools chosen for the project are discussed in Section 3.4, and

the section concludes with implementation details on database design in Section 3.5.

3.1 Data Source & APIs

The project primarily uses the NewsCatcher API [6] to retrieve real-time global news articles

data in JSON format. The API provides ready-to-use news from over 90,000 news sources

worldwide. It serves as a crucial baseline for our project by providing a real-time news source

that will be retrieved every 10 minutes. This interval was selected after load‑testing,

considering the number of news items incoming every minute, striking a balance between

real-timeness and efficiency of the API calls.

3

Figure 1. API call function to retrieve news data using the NewsCatcher API

The news retrieval function in Figure 1 above calls the NewsCatcher API with various filter

options applied. It retrieves articles published within the last 10 minutes, according to our

10-minute polling interval. Then it filters out news in English, published in the United States

only. Also, to prevent users from getting overwhelmed by too many news articles and prevent

duplicate news, the function retrieves data from only the top 500 news websites ranked by

traffic. These basic filters enable our system to serve only necessary and credible sources to

users and to process them by our system components. Nevertheless, the function is

configured to retrieve all news articles without any keyword filtering. As this option only

provides a basic keyword match between the news and the keyword input, the parameter

q="*" is set to include every source. Since our system aims to capture both direct and

indirect matches between stock and news articles, the actual filtering to find relevant news

articles for a specific stock will be conducted in a subsequent implementation under the

embedding search part. Finally, this function will be called by the polling function, which

will be discussed in the next sub-section.

4

Figure 2: News data example retrieved from the NewsCatcher API

Figure 2 shows an example result from the NewsCatcher API call. The API provides various

metadata, including title, published date, link to the original news, excerpt, and full content of

the news etc. Fields such as published data and title will be served directly to the user for

their reference. Mainly, the full content of the news, under the `summary` field, will be

processed further for summarization and comprehensive analysis.

On the other hand, another data source—the Refinitiv API has been utilized. Refinitiv API

was used to fetch stock-related information, including stock ticker names, company names,

exchanges, market capitalizations, and more. Figure 3 below illustrates an example of NYSE

constituent data fetched from the Refinitiv API.

Figure 3: Stock-related data example from Refinitiv API

Among these data, stock ticker (e.g., AAPL) with a company name (e.g., Apple Inc.) has

been used in the ‘entering stock input page’ (See Figure 4 below.), to serve a list of stocks —

allowing users to search for the stocks they hold or wish to track.

5

Figure 4. Entering the stocks input page

Moreover, stock exchange, sector, real-time stock prices, previous close, real-time stock

price, and trading volume history were used to supply data in the left part of the dashboard.

(see Figure 5 below).

6

Figure 5. Dashboard page with data from Refinitiv API at the left side

3.2 System Architecture

The project consists of several system components designed to provide a personalized and

real-time financial news notification system with summaries and personalized analysis, as

shown in Figure 6 below.

Figure 6. System Architecture - Overview of the LLM-based Real-time Personalized

Financial News Notification System

 As most of the components use LLM, prompt engineering was adopted because it tailors a

general-purpose OpenAI GPT model to specialized finance tasks without the time and cost of

fine-tuning. Carefully designed role instructions and a few‑shot learning were implemented,

and ensured responses follow a strict JSON schema.

3.2.1 Keywords Generator LLM

First, a Keywords Generator LLM has been implemented to serve as a pre-processing step to

find relevant news articles tailored to individual users' stocks. Upon user registration, users

are directed to provide stock names to the backend system for personalization. When stock

7

names are provided, the keywords generator LLM expands the data by generating 10 relevant

keywords that may reflect potential news narratives. For example, if a user provides

‘Coca-Cola’ stock, the generated example keywords may include ‘beverage industry trends,’

‘sugar tax impact,’ or ‘global supply chain challenges.’ Those keywords are generated to

improve the process of finding relevant news articles for a better personalized experience

through the embedded search. Especially, generating example keywords enables the system’s

embedding search model to go beyond a direct literal string match between the keyword (e.g.,

"Nvidia") and the news title or content. It allows embedding search against news content and

all the keywords generated, enabling indirect search between them. The Keyword Generator

LLM was instructed with a tailored prompt as below. Hence, in total, eleven keywords are

generated per stock—ten from the Keyword Generator LLM and one from the

ticker/company name itself, providing both direct and indirect semantic captures.

Context: I am building a system that uses embedding search to determine if a

news article is relevant to a specific stock (e.g., 'Coca-Cola'). The goal is

to provide real-time stock impact analysis. While exact name matching catches

direct mentions, the system must also identify articles indirectly related to

the stock to be effective. For example, news about the 'beverage industry

trends' or a major competitor like 'PepsiCo earnings' could impact

'Coca-Cola' and should be considered relevant.

Your Objective: Generate a set of 5-10 diverse, semantically rich keywords

and short phrases related to the provided stock name ({{$stock_name}}). These

terms are critical for improving embedding-based relevance detection for news

articles. They will be embedded and used to search against news article

embeddings.

Key Requirements for Generated Terms:

1. Capture Indirect Relevance: Go beyond the company name. Think about

concepts, entities, and topics frequently discussed in relation to or

affecting the target stock. Consider:

- Industry/Sector: Broader market trends, sector-specific regulations

(e.g., "soft drink industry", "consumer staples sector").

- Major Competitors: News about direct rivals (e.g., "PepsiCo

results", "Keurig Dr Pepper competition").

8

- Key Products/Brands: Significant product lines or brands owned by

the company (e.g., "Sprite sales", "Dasani water", "Fanta marketing").

- Supply Chain/Partnerships: Major suppliers, distributors, or

significant partnerships (e.g., "bottling partners", "sugar prices impact").

- Relevant Macro Factors: Economic or social trends strongly impacting

the specific company/sector (e.g., "health trends beverages", "commodity cost

inflation").

- Key Personnel (Less Common but possible): Sometimes news focuses on

impactful executives (e.g., "CEO James Quincey statement").

2. News-Oriented: The terms should be phrases or concepts likely to actually

appear in financial or business news articles related to the stock or its

ecosystem.

3. Semantically Rich: Each term should represent a distinct, meaningful

concept relevant to the stock's performance or perception.

4. Concise yet Effective: Aim for brevity (1-4 words typically), but

prioritize capturing the concept accurately for embedding over extreme

shortness.

5. Diverse: Cover different types of relationships (competitor, industry,

product, macro factor, etc.).

Task: Based on the user-provided stock name below, generate 5-10 relevant

terms meeting the above criteria.

Input: User-provided Stock name: {{$stock_name}}

Output Format Constraint:

 You MUST return ONLY a valid JSON object containing a single key "keywords"

with a list of strings as its value. Do NOT include any explanations,

apologies, or introductory text outside the JSON structure.

Your JSON Output format must be

{ "keywords":

 ["xxx", "yyy", …]

9

}

Your JSON Output:

Figure 7. Prompt given to the Keyword Generator LLM

The prompt above emphasises three core ideas. Firstly, it explicitly instructs the model to

capture indirect relevance by listing industry trends, competitors, supply‑chain partners, and

macro factors, ensuring broader coverage. Secondly, it enforces output to be a strict JSON

schema, which allows the following pipeline to parse results reliably without extra validation.

Thirdly, diversity and brevity are mandated so that each keyword adds a distinct and unique

semantic value.

3.2.2 Embedding Model

Next, the system converts these keywords into embeddings, which are then stored in the

Milvus Vector Database for later use in embedding search to filter relevant financial news

articles. Embeddings represent words or sentences as numerical vectors that capture the

semantic relationships within text data [7]. Those embeddings are widely employed in

embedding search due to their ability to capture and distinguish semantic nuances. This

approach enables the determination of similarities not only between individual sentences but

also across entire documents, making it a powerful tool for extracting relevant information.

The Keywords Generator LLM mentioned in Section 3.2.1 enhances the stock data by

expanding it into a more comprehensive dataset, enabling more robust embedding and

thorough analysis. The figure 8 below illustrates a detailed embedding search process.

10

Figure 8. Embedding search system design.

On the right side under “User Input”, the 11 generated keywords from the Keyword

Generator LLM discussed in the previous subsection are stored in the Milvus vector database.

On the left side, the news article’s full content provided by the polling agent is converted into

vector embeddings in real-time. Then, the embedding search is conducted between each news

article and the keywords stored in the vector database. The cosine similarity of two

embedding groups is calculated to obtain a similarity score, and only news articles whose

highest similarity score exceeds our pre-defined threshold value of 0.4 are selected as

relevant articles to a matched keyword.

The threshold value of 0.4 was selected as a result of qualitative analysis on the results, where

the patterns show that irrelevant news articles such as ‘Spurs take on the Grizzlies on 3-game

losing streak’, showed an extremely low similarity score of 0.016 when compared against the

keyword embeddings of Nvidia Corporation. On the other hand, news directly related to

Nvidia such as “Nasdaq Sell-Off: After Losing Nearly $800 Billion in Market Cap, Is Nvidia

Stock a Buy Anymore?” showed a moderate similarity score between embeddings of Nvidia

Corporation. Although it did not show a strong similarity score, upon multiple observations,

our team has safely deduced that even directly related news did not show strong relevancy

trends due to embedding dilution from lengthy articles' full-text. Crucially, the value was

chosen to be 0.4 to capture indirectly relevant news that did not mention “Nvidia” at all. For

example, news such as “Arm Holdings Reportedly Aims To Capture Half Of The Data Center

CPU Market In 2025” showed a similarity score of 0.437. Hence, setting the threshold of 0.4

filters out obvious irrelevant news while still admitting both direct and indirect news articles.

The matched news article that exceeds the threshold score is considered relevant to a specific

stock and stored in the database with a matched keyword. It is then forwarded to the News

Summary LLM and Stock Analyzer LLM for further analysis of the news article.

2.2.3 Polling Agent

Simultaneously, a polling agent continuously polls the financial news from the NewsCatcher

API with an interval of 10 minutes. Figure 9 below illustrates the detailed workflow of the

polling agent.

11

Figure 9. Polling agent workflow.

The main FastAPI server runs a polling agent implemented by the APScheduler library’s

BackgroundScheduler to poll news every 10 minutes asynchronously without blocking the

main thread. Then, the agent pre-processes it by extracting news content from the full JSON

response and converts the news content into embeddings. After retrieving news articles, the

articles undergo a series of tasks, starting from pre-processing news to extract only relevant

data (i.e., news title & content) from the full JSON result to generate embeddings of each

news article, perform embedding search, and passing it to subsequent Large Language

Models to generate various analysis. Since those multiple LLM APIs exert heavy network I/O

which may cause significant delay if processed sequentially, Python’s asynchronous functions

through `asyncio` and `aiohttp` were utilized to process each task concurrently.

In the following subsections, multiple LLMs will be introduced that are used to feed data for

the news detail page, as shown in the figure below.

12

Figure 10. News Detail page showing Summary, Key Metrics, Sentiment Analysis and Stock

Impact analysis

3.2.4 Summary LLM

First, to save users’ time reading through the full content of the selected article, the

application was designed to provide a concise summary of the news article by implementing

the Summary Generator LLM. The prompt given to the model is as below.

13

[%system%]

You're a professional journalist and an expert in summarizing a news article

into a concise and high-quality summary.

Your Task: Generate a 3-4 sentences summary from the given news article

content from any topic. In addition, generate a short ONE-SENTENCE summary.

[IMPORTANT]

Note that the generated keywords and examples MUST NOT BE too general. IT

MUST BE RELATED TO the provided user input.

{

 "summary": "xxx",

 "one_sentence_summary": "yyy"

}

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

News Article Content: {

{$article_content}

}

Your JSON Output:

Figure 11. News Summary LLM Prompt

The prompt directs the system to generate a summary in a concise and high-quality manner,

and emphasizes it to be related to the provided user input. It also enforces returning the

summary in JSON format for storage in the database and further processing. Moreover, the

`one_sentence_summary` is generated, allowing users to scan through a short one-line

summary on the dashboard and choose what to read further.

14

3.2.5 Key Metrics LLM

Followed by the summary, key metrics from the news article were extracted by the large

language model. This allows users to scan through quantitative key metrics, including

numerical values and financial indicators relevant to the company or market mentioned that

may impact the stock price. This serves as a useful tool especially for experienced investors,

who can quickly grasp the current topics discussed in the article through the factual,

quantitative data. Figure 12 below illustrates the prompts given to implement Key Metrics

LLM.

To guide the model further, our system employed few‑shot learning where an example

input‑output pair is embedded in the prompt under [%user%] and [%assistant%], feeding the

full article text and the desired JSON output. These exemplars teach the LLM the required

extraction pattern without additional fine‑tuning, reducing formatting errors and ensuring the

model’s consistency.

[%system%]

You’re a professional financial data extraction assistant and an expert in

analyzing news articles and generating key financial metrics in the news

article. Focus on numerical values related to the company’s financial

performance, stock movement, and market reactions.

Your Task: Extract key financial metrics from the provided financial news

article. Focus on numerical values and financial indicators relevant to the

company or market mentioned.

[IMPORTANT]

Note that the key metrics MUST NOT BE generated on your own. It must be

consolidated from the user input. Restrict your each response into one short

concise sentence. Return 1 to 5 key metrics, ensuring each is short and

concise while covering all critical financial indicators. If there’s no key

metrics, return empty list in JSON format given.

[%user%]

15

Article: NVIDIA Co. (NASDAQ:NVDA – Get Free Report)'s stock price traded down

1.2% on Thursday after an insider sold shares in the company. The stock

traded as low as $131.80 and last traded at $135.34. 225,240,656 shares

traded hands during trading, a decline of 43% from the average session volume

of 395,069,875 shares. The stock had previously …

[%assistant%]

{

 "key_metrics": [

 "Stock traded as low as $131.80; last price at $135.34; previous close

was $136.92.",

 "Volume: 225,240,656 shares, 43% below average of 395,069,875 shares.",

 "Insider transaction: 716 shares sold at $142.00 for $101,672.00;

director's holding decreased by 3.47% to 19,942 shares.",

 "Quarterly earnings: Revenue of $35.08B vs. estimate of $33.15B; EPS

reported at $0.81, beating the $0.69 consensus by $0.12.",

 "Valuation: Market cap of $3.39T; P/E ratio of 54.41; Debt-to-Equity

ratio of 0.13; Beta of 1.66.",

 "Corporate action: Board authorized a $50B stock repurchase program."

]

}

Extraction Criteria:

1. Company Performance: Revenue, Net Income, Earnings Per Share (EPS),

Year-over-Year (YoY) or Quarter-over-Quarter (QoQ) changes, Operating Profit,

Gross Margin, etc.

2. Stock Market Metrics: Stock price changes (e.g., % increase or decrease),

pre-market or after-hours movement, analyst target price updates, trading

volume, market capitalization, etc.

3. Financial Ratios: Price-to-Earnings (P/E) ratio, Debt-to-Equity (D/E)

ratio, Dividend Yield, Free Cash Flow, etc.

16

4. Macroeconomic Indicators (if applicable): Interest rate impact, inflation

rate, GDP growth, unemployment rate.

[%user%]

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

Return the key metrics as concise, well-formatted short sentences.

Article: {{$content}}

Your JSON Output:

Figure 12. Key Metrics LLM Prompt

The prompt also contains a system message that defines the model’s role as a “professional

financial data‑extraction assistant” and explicit instructions limiting each response to 1–5

concise sentences in JSON format, ensuring consistent and accurate outputs.

3.2.6 Sentiment Analysis LLM

Followed by the Key Metrics LLM, a Sentiment Analysis LLM has been implemented. The

following figure illustrates the prompt given to the large language model.

[%system%]

You're a professional financial expert who specializes in sentiment analysis

of a financial news article related to a provided stock name.

The sentiment analysis includes the following items.

1) One of [Strong Negative, Negative, Neutral, Positive, Strong Positive].

 - where strong negative means the given news article or the contents of the

news article are high indicators of the given stock's price will fall down in

a future.

 - where strong positive means the given news article or the contents of the

news article are high indicators of the given stock's price will go up in a

future

17

 - Neutral means that it's not reasonable or there's no significant

indicator of the stock price from the news article.

2) Insightful, factual, reasonable, logical, detailed analysis & rationale &

proofs & evidence of your claim from item (1).

 Do not merely give meaningless, verbose, no-depth, abstract reasons. Give

DEFINITIVE PROOFS OR EVIDENCE OR RATIONALE to your claim in a structured

manner.

3) Also, provider a "SENTIMENT SCORE" ranging from [-5 ~ 5] (inclusive) to

indicate how positive/negative the given news is.

 - 5 means Strong positive, and -5 means Strong Negative, and 0 means

Neutral.

 - Give it as a floating-point number.

Make sure that your sentiment analysis output is CONCISE AND INSIGHTFUL. It

should not be verbose and long. Must be around 3~4 sentences depending on the

situation.

In addition, you will be provided a specific stock name that you must analyze

the impact with.

Your sentiment analysis of the news article must be done in consideration of

this given stock name.

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

You must return response in the following "JSON" format (only JSON)

{

 "sentiment": "xxx", // item (1) - either Strong_Negative, Negative,

Neutral, Positive, Strong_Positive

 "sentiment_score": xx,

 "analysis": "..." // item (2)

18

}

Given stock name: {{$stock_name}}

News Title: {{$title}}

News Content: {{$content}}

Your JSON Output:

Figure 13. Sentiment Analysis LLM prompt

According to the prompt above, the model receives the stock name, news title, and news full

content to generate 3 outputs. Firstly, it generates a `sentiment` label ranging from [Strong

Negative, Negative, Neutral, Positive, Strong Positive] scale that captures the overall tone of

the article toward the stock, letting users a to gauge the sentiment at a glance. Secondly,

`sentiment_score`, which is a numerical floating-point value between -5 and 5 that quantifies

the sentiment. The quantified value will be used later in the dashboard UI to deliver “Quick

Summary”, where the news articles are divided into positive and negative news and sorted in

descending order to provide the headline of the most impactful news article, which means

having highest/lowest sentiment score. Lastly, a concise sentiment analysis of the news article

is generated in relation to the specific stock name given. The model was mandated to

generate only insightful, factual, reasonable, logical, detailed analysis & rationale & proofs &

evidence in generating the analysis, to deliver only impactful analysis to the user. Combined

with a `sentiment` tag, the analysis was instructed to be concise and insightful to prevent

users from spending too much time reading the analysis but grasp the takeaway quickly.

3.2.7 News Impact Analysis LLM

Lastly, the News Impact Analysis LLM has been implemented with a curated prompt (see

Figure 14 below). It goes beyond the sentiment analysis by focusing on generating an

analysis on the actual possible impact of the news article on the stock’s price.

[%system%]

19

Taehyun Kim

You are a stock market news analysis agent that evaluates how news impacts

stock prices, catering to retail investors with three expertise levels (easy,

intermediate, expert).

The news could be discussing any kind of topic, but related to the stock. The

key task is to find an impact to stock price of this news, and possibly

provide a logical explaination behind the stock price prediction in English.

You will also be given a stock name. Create your stock impact analysis report

towards the given stock.

<Requirements>

1. Summary of the news is not compulsory, mainly discuss the implication to

the stock price and logical explanation behind it.

2. If the news has negligible impact to stock price then you can just give

some logical explanation of why it is not important.

3. For the analysis, please find below instructions for your reference. It

would be better if you can provide industry-specific viewpoints, as well.

4. **Easy**: Explain all industry-specific/technical/financial terms (e.g.,

P/E ratio, EBITDA) in simple language. Give full defintion of the terms below

the analysis. better

5. **Intermediate**: Assume basic financial knowledge; skip explanations for

common terms (e.g., dividends, market capitalization). Better to give some

explaination of complex technicals below the analysis.

6. **Expert**: Use advanced knowledge (e.g., discounted cash flow, beta

volatility and many others) and financial ratios without much explanations.

<Output Format>

Please return a JSON format like the following:

20

{

"easy": "..."

"intermediate": "..."

"expert": "..."

}

[%user%]

Example 1: Biotech FDA Approval

Stock: BioPharma Inc.

News Content:

BioPharma Inc. receives FDA approval for its Alzheimer’s drug, projects $1.2B

in peak annual sales, and sets a 12-month price target of $85. A short seller

report warns of trial data inconsistencies.

[%assistant%]

{

"easy": "BioPharma Inc. got approval from the FDA (U.S. drug regulators) for

its Alzheimer’s treatment, which it expects to generate $1.2 billion per

year. Analysts predict the stock could reach $85 within a year, but a

critical report claims some test results might be unreliable. Risks include

competition from larger drugmakers and high R&D costs (money spent developing

new drugs).",

"intermediate": "BioPharma’s FDA approval supports a bullish $85 PT (35x

P/E), but a $300M per quarter cash burn raises dilution risks. Pipeline

catalysts include a Parkinson’s drug entering Phase 2 trials.",

"expert": "BioPharma’s Alzheimer’s drug approval (FDA label includes broad

indication) drives PT to $85 (DCF: WACC 12%, $1.2B peak sales, 55%

probability-adjusted). Short seller claims on trial data heterogeneity

21

(p=0.07 in subgroup) may limit near-term upside. With a cash runway of six

quarters at the current burn rate, an equity offering (15-20% dilution) is

likely. EV/sales at 5x vs. sector 7x reflects pipeline overhang."

}

[%user%]

YOU MUST RETURN ONLY JSON. DO NOT INCLUDE ANYTHING ELSE IN YOUR RESPONSE.

Stock: {{$stock}}

News Content: {{$content}}

Your JSON Output:

Figure 14. News Impact Analysis LLM prompt

It is prompted to generate the news analysis in 3 different difficulty levels - Easy,

Intermediate, and Expert. Each analysis includes a prediction of how the news article might

impact the stock price. A cricual part of this model is that it generates this three-tired analysis

to serve users who may have different financial literacy. Some users may not recognize

financial terms that appear in the news article such as the P/E ratio and understand why it

matters, while others can grasp them easily. Therefore, to serve our objective in educating

novice retail investors, the model is instructed to provide three different levels of analysis.

Novice retail investors can build financial knowledge through the explanation on

industry-specific/technical/financial terms (e.g., P/E ratio, EBITDA) in simple language. By

tailoring depth to user needs, the system delivers actionable guidance and simultaneously

fosters financial literacy.

3.2.8 Delivery via Discord Notification

As the final step, after generating all analyses and summaries by the LLMs discussed, a

concise notification for news articles curated with sentiment and summary is delivered

automatically via Discord, enabling a real-time and personalized notification on relevant

news altogether. This is achieved by using Discord’s webhook API, where our system sends

22

an HTTP request to the Discord Webhook server that sends the notification to the selected

Discord channel. This allows delivering real-time and personalized notifications on relevant

news to each user.

3.3. Feedback for Embedding Search Results

Another core feature to support better relevancy matching by the embedding search is

providing users with a feedback button to receive feedback on whether the matched article

was in fact relevant to the user’s stock. Since the concept of relevancy can be subjective,

especially when articles is indirectly related to stock name where it do not explicitly mention

the company name but are still contextually related, the feedback loop has been implemented

to address this limitation.

Figure 15. Stock detail page with feedback loop feature.

The UI/UX has been implemented in a simple way so that the user is able to click either

“Yes” or “No” in response to the question “Did you find it relevant to the stock?” in order to

simplify the feedback collection process for better user experience.

Initially, the team experimented with adjusting the similarity score threshold value to reflect

user feedback, for example, making it higher by 0.1 when “No” button was clicked. However,

this method was too general and ineffective, as it applied changes to all keywords at once

even though the user might have felt that only the specific keyword matched was irrelevant.

Therefore, to implement the feedback loop without affecting other relevant matches, the

current implementation solves this by selectively removing only the matched keyword vector,

enabling a more precise personalization.

When the user clicks “No”, the system proceeds to delete that keyword vector for the

user‑stock pair in the Milvus vector database. This means the user didn’t find the article

captured by that specific keyword was relevant to the sstock, hence removing the keyword

will ensure that future incoming news will not be captured by that keyword. After the

23

removal, the Keyword Generator LLM will re-generate another keyword to maintain a total

of 10 keyword vectors.

This process allows each individual user to maintain their own list of relevant keywords

related to each stock they own, reflecting their subjectivity in viewing the relevancy, thus

giving the most possible personalization to each user based on unique interpretation of what

is relevant.

3.4 Engineering choices

Figure 16. Development tools used: FastAPI, MySQL, React, Milvus, HuggingFace, and

OpenAI, in that order.

The main backend system of this project has been implemented using FastAPI and Python.

Since the system heavily utilizes large language models, the components related to the LLMs

were built with FastAPI and Python too, as their implementation is best supported the best in

a Python environment. FastAPI also provides fast and high performance, supported by the

Asynchronous Server Gateway Interface (ASGI) which operates on a single-threaded model,

providing high performance.

MySQL was used to store user data, stock information, news articles and their corresponding

analysis and key metrics. A relational database has been utilized for efficient storage of

structured data with a concrete schema.

24

The Frontend was implemented using React, leveraging its strong ecosystem and reusability

of components to build a dynamic single-page application. For example, the dashboard UI

consists of multiple reusable components, such as news card list.

On the other hand, Milvus was selected as a vector database due to its high performance and

ease of use by providing abstraction. HuggingFace and OpenAI were chosen for their

cost-effectiveness and State-of-the-Art Models supported by a robust ecosystem.

The server will be deployed on Amazon Web Services (AWS) to ensure high reliability and

scalability.

3.5 Database Design

Figure 17. Entity-Relationship Diagram of the system database schema

Figure 17 above illustrates the relational database schema designed to support the core

functionalities of the backend system.

The user information, including username and password is stored in the `user` table, while

stock-related information fetched from the Refinitiv API is stored in the `stock_info` table,

which includes the stock ticker and stock name. The list of stocks shown on the entering user

stock page (see Figure 4) is retrieved from this table.

 The intermediate `user_stock` table represents the many-to-many relationship between users

and stocks, allowing each user to subscribe to multiple stocks and vice versa. This structure

25

supports personalization by maintaining a unique `user_stock_id` for each user-stock pair,

which is later used to associate matched news.

The `news` table is central to the system, storing all matched articles per `user-stock`. It

includes fields such as title, author, publisher, link, and published_date as raw metadata, and

also stores LLM-generated content like summary, sentiment analysis, stock impact analysis,

etc.

Importantly, each news entry records the `matched_keyword`, which is essential for the

feedback loop discussed in Section 3.3. If a user clicks “No” on the feedback, the system

identifies the keyword associated with that article and deletes its corresponding vector from

the Milvus database.

Lastly, since each news article can produce up to 5 metrics, the `metric` table was added to

represent a one-to-many relationship between news and metrics.

This schema supports the personalized workflow of the whole system, from user-stock

interest tracking to news retrieval, analysis, and saving them for efficient lookup and reuse.

4. RESULTS & DISCUSSION

This section discusses the results of the project including the frontend implementation

discussed from the user's perspective (Section 4.1), as well as the results and experiments

from the LLMs discussed in the methodology sections. (Section 4.2).

4.1 Frontend Result

This section discusses the results of the frontend implementation, along with some details of

the backend implementation.

26

4.1.1 Sign-up page

Figure 18. Sign-up page

First, the sign-up page has been implemented. It allows a simple and straightforward sign-up

process with a username and password.

4.1.2 Sign-in page

Figure 19. Sign In page

27

After a successful sign-up, the user is directed to sign in. Upon user sign-in, a JSON Web

Token (JWT) is issued and added in the `Authorization` Header of every subsequent HTTP

request. The JWT contains the userId of the user using the system, enabling the system to

always identify the user using the header. The userId is being used to identify which user is

using the app across all API calls, to fetch their personalized news curation.

4.1.3 Stock Input page

Upon the first sign-in, users are directed to select the stocks they wish to track. Figure 20

shows the page where the user can choose or search from the drop-down list of all the stocks

listed on the New York Stock Exchange.

Figure 20. User stock input page with stock lists

Users can choose multiple stocks, allowing them to track their various portfolio holdings

effectively. Figure 21 below shows the same page after the user has chosen multiple stocks.

28

Figure 21. User stock input page with stocks selected

As demonstrated in Figure 21 above, users can choose multiple stocks and easily remove

them. Additionally, when the user chooses a specific stock, that stock will no longer be

visible in the news drop-down list for a better user experience. When the user removes the

selection, it reappears in the list.

When the user clicks the “Confirm” button, the process of generating relevant keywords

begins. The Keyword Generator LLM discussed in the methodology section (see Section

3.2.1) is triggered and generates 10 keywords per stock, which are stored in the Milvus vector

database along with the `user_stock_id` for personalized news curation.

4.1.4 Dashboard Page

Once the user confirms their stock selections, they are redirected to the main dashboard page.

Several experiments and improvements were made to the dashboard page, including a major

UI/UX redesign. Based on iterative feedback, we optimized the layout to enhance readability

and reduce the time required to interpret news content.

The initial version had a top-down layout in dark mode, where news articles appeared at the

bottom of the page. However, this design made it difficult for users to quickly grasp relevant

content (See Figure 22 below.)

29

Figure 22. Initial dashboard page design

To enhance readability and streamline user experience, the dashboard was restructured into a

left-right layout. The left section of the revised dashboard page (See Figure 23 below)

displays output of the Refinitiv API integration, presenting key stock-related information

including exchange, sector, stock price, and previous close. The stock price history and

trading volume history were visualized through charts, providing users with an all-in-one

platform where they can monitor relevant news alongside corresponding price and volume

movements. Also, the “Personalized News Curation” section was moved to the right part

from the bottom since the main focus of TradeBox is to provide users with personalized news

curation with analysis.

30

Figure 23. Revised Dashboard page

Meanwhile, the right section focuses on personalized news curation, including real-time

articles matched through embedding search. To help users quickly identify high-impact

updates, news articles classified with strong_positive or strong_negative sentiment were

visually highlighted using green and red background colors, respectively.

Moreover, a “Quick Summary” section was implemented at the top-right corner of the

dashboard to emphasize the key positive and negative news on the selected stock. (See Figure

23 above). Here, the `sentiment score` generated by the Sentiment Analyzer LLM was

utilized to automatically choose the top 2 news articles with the highest and lowest sentiment

score, displaying them under “Key Positive News” and “Key Negative News”.

31

Figure 24. Choosing a stock among multiple stocks

Finally, multi-stock functionality has been developed. Users can seamlessly change the stock

they are currently viewing, which dynamically updates the dashboard content to show only

the selected stock’s information and news curation.

4.1.5 News Detail Page

Lastly, clicking the “See Detail” button on each news article opens a dedicated news detail

page (See Figure 25 below).

Figure 25. News Detail Page

 This page provides users with a comprehensive, yet effectively concise information

including summary, key metrics, sentiment analysis, and stock impact analysis, which are

generated by Large Language Models discussed in the Methodology section (See section

32

3.2). The page has a side-by-side panel structure, where the left panel allows users to browse

articles and the right panel displays detailed content, making it easy for users to navigate

through multiple news articles.

In the “Stock Impact Analysis” section, users can select the desired level of explanation from

Beginner, Intermediate, or Expert based on their financial literacy. The analysis content

dynamically updates without any delay of API calls or page reload, offering a seamless user

experience.

Lastly, at the bottom-right corner, a feedback component allows users to indicate whether

they found the article relevant to the stock. Based on the response, background logic is

triggered as described in the feedback loop mechanism (see Section 3.3), enabling the system

to refine future recommendations.

4.1.6 Real-time Notification via Discord Channel

Simultaneously, every news article that appears in the dashboard news curation is sent to the

user through a designated Discord channel. This enables users to receive timely updates

without needing to manually revisit our website to check for fresh new articles.

33

Figure 26. Discord Notification for Nvidia stock

Figure 26 shows an example of the notification related to Nvidia. The content of the

notification includes the stock name, published date, sentiment, news title and a summary,

which is selected to provide a brief overview of the news at a glance. Each message also

contains a clickable link that redirects the user to the corresponding News Detail Page of the

system, allowing for seamless access to full analysis if desired.

4.2 Results & Experiment on Embedding Search and Keyword Generator LLM

This section discusses the experiment and results of implementing the keyword Geneator

LLM and the embedding search.

34

Figure 27. Results of Keywords generated from the Keyword Generator LLM

Figure 27 above demonstrates the output of the Keyword Generator LLM implemented (See

section 3.2.1 for implementation details). For the stock “Nvidia Corporation”, semantically

relevant keywords such as ‘AI technology trends’, ‘graphics processing units’, and ‘data

center demand’ were generated.

A qualitative analysis on the keywords generated has been conducted with validation from

peers, along with the quantitative evaluation based on the similarity scores between generated

keywords and news articles. These results demonstrated successful implementation of the

embedding search model and Keyword Generator LLM, confirming their effectiveness (see

Table 1 below).

Initially, a higher similarity score threshold (0.6) was tested, but it excluded many indirectly

or contextually relevant articles that didn’t mention the stock name directly. Based on

experimental results, the threshold was adjusted to 0.4 which achieved a better balance that

35

Taehyun Kim

retrieved a wider range of indirectly relevant news articles while effectively excluding

unrelated ones.

News Article Title Matched Keyword Similarity Score

Arm Holdings Reportedly Aims To Capture

Half Of The Data Center CPU Market In

2025 – Retail's Divided As Stock Falls

AI technology trends 0.437

 Nasdaq Sell-Off: After Losing Nearly $800

Billion in Market Cap, Is Nvidia Stock a

Buy Anymore? History Offers a Clear

Indicator of What Could Happen Next.

NVIDIA Corporation 0.521

AI datacenters want to go nuclear. Too bad

they needed it yesterday

data center demand 0.494

AMD Downgraded as AI Chip Struggles to

Challenge Nvidia's Grip

major competitor AMD 0.616

‘Spurs take on the Grizzlies on 3-game

losing streak’

- 0.016

Table 1. Results of Embedding Search against keywords generated

Table 1 above summarizes the results of the embedding search between five news articles and

the keywords generated for Nvidia. The results demonstrate how the model captures not only

directly relevant articles but also indirectly related ones. For instance, the first and third

articles do not mention “Nvidia” explicitly but still receive a similarity score of 0.437 and

0.494, respectively.

Despite the score being lower than directly matched articles (e.g., the second and fourth

articles with 0.521 and 0.616 respectively), the margin is not significant, suggesting the

effectiveness of the model in identifying semantically or indirectly relevant content. In

contrast, clearly irrelevant articles, such as the last one, showed a very low similarity score of

36

Taehyun Kim

0.016. This supports the decision to use 0.4 as a threshold for identifying relevant news,

possibly eliminating risks in delivering totally irrelevant articles.

Moreover, the matched keywords were accurate and contextually appropriate. For example,

the news article titled “Arm Holdings Reportedly Aims To Capture Half Of The Data Center

CPU Market…” was matched with “AI technology trends,” and the article “AI datacenters

want to go nuclear…” was matched with “data center demand.”

These results demonstrate that the Keyword Generator LLM can produce meaningful,

semantically aligned keywords that enable the system to detect both directly and indirectly

relevant news articles through embedding search.

5. CONCLUSION & FUTURE WORKS

5.1 Conclusion & Findings

TradeInbox addressed the challenges retail investors face in consuming and analyzing the

high volume of real-time financial news. Existing platforms often lack personalization or

immediate and actionable analysis. To address these limitations, an LLM-based Real-time

Personalized Financial News Notification System has been developed, which is designed to

efficiently filter, summarize, and analyze relevant news tailored to individual user stock

portfolios, aiming to reduce information asymmetry and enhance financial literacy by

educating them through tailored educational analysis.

The findings confirm the successful implementation and effectiveness of the core

components. The prompt-engineered Keyword Generator LLM, combined with embedding

search using a 0.4 similarity threshold, identified both directly and indirectly relevant articles.

The successful implementation and integration of multiple LLMs to generate concise

summaries, key metrics, sentiment analysis, and multi-tiered stock impact analysis provided a

detailed and educational news analysis function. As a result, initial user testing yielded

positive results, with over 70% user satisfaction reported attributed by participants to the

system's prompt delivery (via real-time scraping and embedding search), personalization,

educational value (from multi-level analysis), and comprehension (aided by the intuitive

37

UI/UX). The functional frontend implementation, real-time Discord notifications, and the

user-driven feedback mechanism demonstrate a viable end-to-end system.

In conclusion, TradeInbox demonstrates the practical application of Large Language Models

in creating a personalized financial news system. The positive user feedback supports the

finding that TradeInbox effectively addresses the core objectives by providing timely,

relevant, and analyzed information. The system's architecture which combines multiple

LLM-driven contents with Milvus vector database search and user feedback, provides a

robust foundation for further development in personalized financial news processing.

5.2 Future Works

The current system successfully delivers core functionality, but a few improvements can

enhance the system's performance and overall user experience.

Firstly, fine-tuning the Keyword Generator LLM with a larger, curated financial dataset,

could enhance the quality of the keywords generated beyond the current prompt-engineering

approach. This approach could improve the performance of embedding search, especially in

capturing indirect and semantically related news articles to a specific stock.

Secondly, enhancing the feedback loop mechanism beyond simple keyword deletion to

dynamically adjust relevance scoring could lead to better long-term personalization and better

user experience.

Lastly, integrating the Trading Vendor API by connecting it to automatically pull users’

portfolio holdings data instead of manually entering stock names could enhance the user

experience and provide more meaningful data in the dashboard, such as portfolio holding

changes.

38

References

[1] D. E. Allen, M. McAleer, and A. K. Singh, “Daily market news sentiment and stock

prices,” Applied Economics, vol. 51, no. 30, pp. 3212-3235, Feb 2019. [Online]. Available:

https://typeset.io/pdf/daily-market-news-sentiment-and-stock-prices-4klgrey2bo.pdf.

[Accessed: April 16, 2025].

[2] [Seeking Alpha - My Portfolio]. seekingalpha.com. Available:

https://seekingalpha.com/account/portfolio. [Accessed: April 16, 2025].

[3] “How do I filter news articles by industry, portfolio or interest on my Android phone or

tablet?,” help.seekingalpha.com. [Online]. Available:

https://help.seekingalpha.com/android-app/how-do-i-filter-news-articles-by-industry-portfoli

o-or-interest-on-my-android-phone-or-tablet. [Accessed: Airpl. 16, 2025]

[4] "Yahoo Finance," finance.yahoo.com. [Online]. Available: https://finance.yahoo.com.

[Accessed: Oct. 16, 2024].

[5] “Who Reads Finance News? Traffic and User Behaviour,”. fintext.io. [Online]. Available:

https://www.fintext.io/case-studies/benchmarking/who-reads-financial-news-web-traffic-and-

user-behaviour/. [Accessed: April. 16, 2025].

[6] "News API: Search Global News Data for Insights and Analysis,

"https://www.newscatcherapi.com. [Online]. Available:

https://www.newscatcherapi.com/docs/v3/documentation/get-started/overview. (Accessed:

April. 16, 2025).

[7] J.-T. Huang et al., "Embedding-based Retrieval in Facebook Search," in Proc. 26th ACM

SIGKDD Int. Conf. Knowledge Discovery & Data Mining (KDD '20), pp. 2553–2561, Aug.

2020. doi: 10.1145/3394486.3403305.

39

https://typeset.io/pdf/daily-market-news-sentiment-and-stock-prices-4klgrey2bo.pdf
https://seekingalpha.com/account/portfolio
https://help.seekingalpha.com/android-app/how-do-i-filter-news-articles-by-industry-portfolio-or-interest-on-my-android-phone-or-tablet
https://help.seekingalpha.com/android-app/how-do-i-filter-news-articles-by-industry-portfolio-or-interest-on-my-android-phone-or-tablet
https://finance.yahoo.com
https://www.fintext.io/case-studies/benchmarking/who-reads-financial-news-web-traffic-and-user-behaviour/
https://www.fintext.io/case-studies/benchmarking/who-reads-financial-news-web-traffic-and-user-behaviour/
https://www.newscatcherapi.com/docs/v3/documentation/get-started/overview

	
	1.​INTRODUCTION
	2.​PROJECT BACKGROUND
	3.​ METHODOLOGY
	3.1 Data Source & APIs
	Figure 1. API call function to retrieve news data using the NewsCatcher API
	Figure 2: News data example retrieved from the NewsCatcher API
	Figure 3: Stock-related data example from Refinitiv API
	Figure 4. Entering the stocks input page
	Figure 5. Dashboard page with data from Refinitiv API at the left side

	3.2 System Architecture
	Figure 6. System Architecture - Overview of the LLM-based Real-time Personalized Financial News Notification System
	3.2.1 Keywords Generator LLM
	Figure 7. Prompt given to the Keyword Generator LLM

	3.2.2 Embedding Model
	Figure 8. Embedding search system design.

	2.2.3 Polling Agent
	Figure 9. Polling agent workflow.
	Figure 10. News Detail page showing Summary, Key Metrics, Sentiment Analysis and Stock Impact analysis

	3.2.4 Summary LLM
	Figure 11. News Summary LLM Prompt

	3.2.5 Key Metrics LLM
	Figure 12. Key Metrics LLM Prompt

	3.2.6 Sentiment Analysis LLM
	Figure 13. Sentiment Analysis LLM prompt

	3.2.7 News Impact Analysis LLM
	Figure 14. News Impact Analysis LLM prompt

	3.2.8 Delivery via Discord Notification

	3.3. Feedback for Embedding Search Results
	Figure 15. Stock detail page with feedback loop feature.

	3.4 Engineering choices
	Figure 16. Development tools used: FastAPI, MySQL, React, Milvus, HuggingFace, and OpenAI, in that order.

	3.5 Database Design
	Figure 17. Entity-Relationship Diagram of the system database schema

	4. RESULTS & DISCUSSION
	4.1 Frontend Result
	4.1.1 Sign-up page
	Figure 18. Sign-up page

	4.1.2 Sign-in page
	Figure 19. Sign In page

	4.1.3 Stock Input page
	Figure 20. User stock input page with stock lists
	Figure 21. User stock input page with stocks selected

	4.1.4 Dashboard Page
	Figure 22. Initial dashboard page design
	Figure 23. Revised Dashboard page
	Figure 24. Choosing a stock among multiple stocks

	4.1.5 News Detail Page
	Figure 25. News Detail Page

	4.1.6 Real-time Notification via Discord Channel
	Figure 26. Discord Notification for Nvidia stock

	4.2 Results & Experiment on Embedding Search and Keyword Generator LLM
	Figure 27. Results of Keywords generated from the Keyword Generator LLM
	Table 1. Results of Embedding Search against keywords generated

	
	5. CONCLUSION & FUTURE WORKS
	5.1 Conclusion & Findings
	5.2 Future Works

