
 1

The University of Hong Kong

2024 – 25

COMP4801

Final Year Project

Final Report

Autonomous Chinese Checkers Playing Robot

Name UID

LEUNG Ho Ning 3035801453

SHIU Chun Nam Alex 3035800849

 2

Acknowledgment

This project would not have been possible without the invaluable guidance, support, and

encouragement of many individuals. Their expertise and generosity of time enabled us to

develop robust checkerboard detection, precise piece recognition, and smooth robotic-arm

control via our custom mobile application.

First and foremost, we extend our deepest gratitude to our supervisor, Dr. T. W. Chim. His

insightful suggestions on project methodology and presentation design, together with his

consistently positive feedback during our meetings, were instrumental in shaping both our

technical approach and our final deliverable.

We are also profoundly grateful to Mr. David Lee from the technical staff, whose patience

and hands-on instruction in mobile-app integration and hardware troubleshooting turned

theoretical ideas into a working robotic system. His mentorship dramatically accelerated our

progress and helped us overcome complex mechanical and software challenges.

Finally, we wish to acknowledge the Faculty of Engineering and the Tam Wing Fan

Innovation Wing for providing access to 3D printing facilities, tool kits, and workspace.

Their support created the perfect environment for innovation and allowed us to bring this

autonomous Chinese Checkers robot to fruition.

 3

Abstract
Chinese Checkers, a game deeply rooted in cultural traditions and familial bonds, symbolizes

unity and heritage within Chinese communities. This project reimagines this classic game

through the lens of modern robotics and artificial intelligence (AI), creating an autonomous

system that bridges tradition and innovation. The developed product integrates a 4-DOF

robotic arm with a vision-driven AI engine, enabling human-robot gameplay with precision

and strategic depth.

The robotic arm, powered by an ESP32 microcontroller, employs inverse kinematics for

millimetric accuracy (error < 2 mm) in piece manipulation, while a custom vacuum

gripper ensures reliable pickup and placement of marbles. The AI system

leverages computer vision (OpenCV-based board detection) and a Minimax algorithm with

Alpha-Beta pruning to compute optimal moves in real time. Key innovations include

adaptive error correction for positional drift, a modular architecture for future scalability, and

a user-friendly Android app for seamless interaction.

By prioritizing affordability (3D-printed components, off-the-shelf hardware) and cultural

relevance, this work not only advances robotic gaming systems but also preserves the

communal spirit of Chinese Checkers. The project underscores the potential of accessible

robotics to sustain cultural heritage, offering a blueprint for revitalizing traditional games

through interdisciplinary engineering.

 4

Table of Contents

1. INTRODUCTION ... 5
1.1 BACKGROUND .. 5
1.2 MOTIVATION ... 6
1.3 OBJECTIVES ... 7
1.4 KEY DELIVERABLES .. 7
1.5 UNIQUENESS OF THE PROJECT ... 9
1.6 CONTRIBUTIONS ... 10

2. PROJECT BACKGROUND AND LITERATURE REVIEW .. 10
2.1 EXISTING SOLUTIONS ... 11
2.2 TECHNOLOGICAL FOUNDATIONS .. 11
2.3 GAPS ADDRESSED ... 12

3. PROJECT METHODOLOGY .. 14
3.1 SYSTEM ARCHITECTURE ... 14
3.2 ENHANCED COMPUTER VISION .. 15
3.3 ROBOTIC ARM ENHANCEMENTS .. 16
3.4 AI STRATEGY IMPLEMENTATION .. 17
3.5 MOBILE APPLICATION .. 18

4. EXPERIMENT AND RESULT ... 19
4.1 HARDWARE ... 19

4.1.1 Robot Arm and Gripper .. 19
4.1.2 3D Modeling .. 20

4.2 CHINESE CHECKER DETECTION .. 21
4.2.2 Board Detection ... 24
4.2.3 Cells Detection ... 27
4.2.4 Marble Detection ... 30
4.2.5 Board State Mapping ... 32

4.3 ROBOT ARM IMPLEMENTATION ... 34
4.3.1 Inverse kinematics ... 34
4.3.2 ESP32-Microcontroller ... 36
4.3.3 Vacuum Gripper Integration .. 38
4.3.4 Height-Optimized Trajectories ... 39
4.3.5 Position Verification ... 39

4.4 ARTIFICIAL INTELLIGENCE ... 42
4.5 MOBILE APPLICATION .. 44
4.6 SYSTEM ARCHITECTURE ... 47

5. FUTURE WORKS AND CONCLUSION ... 50
5.1 FUTURE WORKS ... 50
5.2 CONCLUSION ... 51

 5

1. Introduction
1.1 Background
Chinese Checkers, known as 波子棋 or 跳棋 in Cantonese, is more than a game; it is a

cultural artifact deeply embedded in the social fabric of Chinese communities, particularly in

Hong Kong. For generations, it has been seen as a symbol of family reunions and festive

celebrations, especially during Lunar New Year gatherings. The game’s hexagonal board,

colorful marbles, and strategic hop-and-jump mechanics foster intergenerational bonding,

where grandparents teach grandchildren tactics, and siblings compete in friendly rivalry.

These interactions are not merely recreational; they embody shared histories and collective

memories, making Chinese Checkers a living tradition that connects past and present. Yet,

despite its cultural resonance and interesting gameplay, which rivals the complexity of chess

or Go, the game has been largely overlooked in the modern world of robotics and artificial

intelligence (AI).

During the COVID-19 pandemic, lockdowns and social distancing measures disrupted family

gatherings, leaving a void in communal activities like Chinese Checkers. While digital

alternatives proliferated, they often sacrificed the tactile and spatial engagement that defines

the physical game. This project emerged as a response to these challenges, seeking to

preserve the essence of Chinese Checkers while adapting it to a world where physical

interaction is not always possible. By developing an Autonomous Chinese Checkers Playing

Robot, we aim to reimagine the game as a bridge between tradition and innovation, enabling

solo players to experience the strategic depth and physicality of the game even in isolation.

Commercial solutions for chess, such as ChessMate or Sony’s Toio, demonstrate the

feasibility of human-robot gameplay but remain prohibitively expensive and narrowly

focused on Western games. Chinese Checkers, with its unique hexagonal geometry, multi-

player dynamics, and cultural specificity, presents distinct challenges, such as precise marble

manipulation and complex jump sequences, that existing systems are not designed to handle.

Moreover, the lack of accessible, open-source frameworks for such games limits

opportunities for community-driven innovation.

This project fills this gap by leveraging cost-effective, modular components to create a

system that is both affordable and adaptable. By integrating AI-driven decision-making with

 6

millimetric robotic precision, the robot not only plays the game but does so in a way that

mirrors a human-like strategy.

1.2 Motivation

The development of this project was driven by a convergence of cultural, technological, and

societal imperatives.

Chinese Checkers, a game deeply intertwined with familial bonds and cultural traditions in

Chinese communities, has historically thrived in physical gatherings during festivals like

Lunar New Year. However, the absence of accessible robotic systems tailored for this game,

unlike widely automated counterparts such as chess, presented a critical gap. This disparity

not only limited opportunities for technological engagement with the game but also risked

diminishing its relevance in an increasingly digital world. By addressing this gap, our project

seeks to innovate within the realm of traditional board games while safeguarding their

cultural heritage.

The COVID-19 pandemic further underscored the urgency of reimagining social interactions.

Lockdowns and restrictions on physical gatherings highlighted the need for alternative

gaming experiences that preserve the spirit of communal play. A robotic opponent offers a

compelling solution, enabling individuals to practice and enjoy Chinese Checkers

independently while retaining the strategic depth and tactile engagement of the physical

game. This dual focus on accessibility and tradition positions the project at the intersection of

cultural preservation and modern technological adaptation.

Advancements in affordable robotics and open-source AI frameworks provided the technical

foundation to realize this vision. Components such as the RoArm-M2-S robotic arm,

OpenCV-based computer vision, and cloud computing democratized access to technologies

once confined to industrial or high-budget research. By leveraging these tools, we

demonstrated that sophisticated systems—capable of real-time board detection, AI-driven

decision-making, and precise robotic manipulation—can be developed without specialized

equipment. This approach not only enhances the accessibility of Chinese Checkers but also

serves as a blueprint for revitalizing other traditional games through technology.

 7

Ultimately, this project is rooted in the belief that cultural heritage and technological progress

need not be mutually exclusive. By reinterpreting Chinese Checkers through the lens of

autonomy and interactivity, we aim to ensure its enduring relevance, bridging generations and

fostering engagement in both physical and digital realms.

1.3 Objectives

The primary objectives of this project were threefold:

1. Autonomous Detection and Decision-Making: Develop a robust computer vision

system to detect board states and marbles in real time, paired with an AI engine

capable of strategic gameplay using the Minimax algorithm enhanced with Alpha-

Beta pruning.

2. Precise Robotic Manipulation: Design a robotic arm system capable of reliably

picking up and placing marbles on a hexagonal board, overcoming challenges such as

positional errors, gripper slippage, and narrow cell spacing.

3. Seamless Integration: Create a user-friendly mobile application to synchronize the

AI’s decisions with the robotic arm’s movements, ensuring a cohesive and interactive

gaming experience.

These objectives have now been fully realized, resulting in a functional system where the

robot autonomously competes against human players, executing moves with millimetric

precision.

1.4 Key Deliverables

This project was structured around three core deliverables, each representing a critical phase

of development:

1. Board Recognition System

The first deliverable focused on creating a robust computer vision framework to detect and

interpret the Chinese Checkers board state in real time. Implemented using OpenCV and a

mobile phone camera, this system achieved:

 8

• Accurate board and marble detection through adaptive image processing (Canny

edge detection, Hough Circle Transform) and HSV color segmentation.

• Real-time data processing, converting physical board states into a digital

17×17matrix representation under controlled lighting.

• Seamless integration with a Flask server for data transmission, enabling instant

updates to the AI and robotic control systems.

This phase laid the foundation for reliable human-robot interaction, ensuring the robotic arm

receives precise positional data for gameplay.

2. Robotic Arm Control

The second deliverable centered on developing precise robotic manipulation capabilities

using the RoArm-M2-S 4-DOF arm. Key achievements include:

• Inverse kinematics implementation for XYZ-axis control, enabling millimeter-

accurate positioning (error < 2mm post-calibration).

• Vacuum gripper integration to securely lift and place marbles in controlled

environments.

• Wireless control protocols (HTTP/JSON) for real-time command execution,

synchronized with the vision system and AI.

This phase overcame critical hardware limitations, such as positional drift and gripper

slippage, through dynamic recalibration and error-handling algorithms.

3. Game Logic and Control Interface

The final deliverable unified all components into a cohesive product:

• AI Strategy Engine: A Minimax algorithm with Alpha-Beta pruning, optimized for

Chinese Checkers’ branching factor and deployed on a cloud server for 3-ply search

depth.

• Android Application: A user-friendly interface enabling gameplay control, real-time

board visualization, and AI move suggestions.

• End-to-End Integration: Synchronized communication between the vision system,

AI, and robotic arm, reducing end-to-end latency.

 9

Modularity and Scalability

Each component was designed for independent testing and upgrades. For instance, the vision

system’s modular architecture allows future integration of machine learning models, while

the robotic arm’s open-source control logic supports alternative end-effectors (e.g., magnetic

grips). This approach ensures the system remains adaptable to new technologies and board

game adaptations.

With all three deliverables now fully implemented, our project achieves its goal of creating

an autonomous, interactive Chinese Checkers experience that honors the game’s cultural

roots while embracing modern robotics and AI.

1.5 Uniqueness of the project

This project distinguishes itself through its pioneering integration of cultural preservation,

technical innovation, and accessibility. First, it addresses a significant gap in robotic gaming

systems by focusing on Chinese Checkers—a culturally iconic game that has been largely

overlooked in automation research, unlike chess or Go. While advanced robotic solutions

exist for Western board games, this work represents the first autonomous system capable of

detecting, strategizing, and physically manipulating pieces in Chinese Checkers, bridging a

critical void in AI and robotics literature. Second, the project prioritizes real-world

functionality over theoretical exploration, delivering a fully interactive product where users

can engage with a robotic opponent through a seamless blend of computer vision, AI

decision-making, and precise mechanical control. Third, the system’s design

emphasizes cost-effectiveness and reproducibility: leveraging off-the-shelf components (e.g.,

RoArm-M2-S robotic arm), 3D-printed custom parts, and open-source frameworks (OpenCV,

Flask) ensures that the technology remains accessible to educators, researchers, and

hobbyists. Finally, the project transcends technical achievement by anchoring itself in

cultural stewardship. By reimagining a game deeply tied to Hong Kong’s collective

memory—often played during Lunar New Year and family gatherings—it demonstrates how

modern robotics can revitalize traditional practices rather than displace them. This fusion of

innovation and heritage, paired with modular architecture for future adaptations, positions the

system as both a technical milestone and a model for preserving cultural legacy through

technology.

 10

1.6 Contributions

Task Contributor(s)

Detection Algorithms Hollis

Marble Coordination Alex

Movement Correction Algorithm Hollis

3D Modelling Alex, Hollis

Artificial Game Engine Hollis

Mobile Application Development Alex, Hollis

System Integration Hollis

Documentation Alex, Hollis

 11

2. Project Background and Literature Review
2.1 Existing Solutions

Commercial robotic systems for board games, such as Sony’s Toio robotics kit

and ChessMate, demonstrate the integration of robotics and AI in gameplay. These systems

interact with game pieces using pre-programmed movements and basic computer vision.

However, they face significant limitations:

1. High Cost: Proprietary systems like Franka Emika’s robotic arms (used in research

labs) cost thousands of dollars, limiting accessibility.

2. Narrow Focus: Solutions prioritize chess, leveraging its grid-aligned pieces and

standardized rules. For example, Stockfish, an open-source chess engine, pairs AI

with robotic arms but cannot adapt to hexagonal boards or multi-hop mechanics.

3. Lack of Cultural Relevance: No commercial systems target culturally significant

games like Chinese Checkers, which dominate family gatherings in East Asia.

Academic research on Chinese Checkers AI, such as Björnsson’s work on heuristic

search (2006), focuses on digital implementations, ignoring physical automation challenges.

2.2 Technological Foundations

In this project, computer vision serves as the foundation for reliable board‐state recognition.

We built our detection pipeline on OpenCV’s classical algorithms: Canny edge detection to

robustly trace the checkerboard’s outline under uneven illumination (Canny, 1986), the

Hough Circle Transform for identifying individual marbles with approximately 95% accuracy

(Ballard, 1981), and Suzuki & Abe’s contour‐finding method to delineate the hexagonal grid

cells (Suzuki & Abe, 1985). While modern convolutional networks such as ResNet can

achieve even higher accuracy, they demand extensive labeled datasets and GPU

acceleration—requirements that conflict with our goals of low latency, cost efficiency, and

on‐device real‐time processing.

On the hardware front, precise piece manipulation is driven by analytical inverse kinematics

adapted to the RoArm-M2-S’s four‐degree-of-freedom geometry. We parameterized each

link using Denavit–Hartenberg conventions and solved for joint angles to reach any (x,y,z)

 12

target on the hexagonal board layout. Servo motors are calibrated via the open‐source

DYNAMIXEL SDK, ensuring sub‐millimeter positioning repeatability, and our custom

vacuum gripper, modeled on FESTO’s industrial suction modules, provides secure marble

pickup without slipping or damaging the pieces.

Finally, our game engine exploits classical search techniques to make strategic move

decisions. We implemented a Minimax algorithm with Alpha-Beta pruning to tame Chinese

Checkers’ high branching factor, drawing on the seminal Knuth & Moore framework (1975).

State evaluations combine distance‐to‐goal metrics, similar to those employed in top checkers

programs (Schaeffer et al., 2007), with board‐control heuristics to balance offensive

progression and defensive blocking. To achieve deeper six-ply searches within acceptable

latency, the AI server offloads parallelized computations to AWS EC2 instances, reducing

average decision times to under 200 ms.

2.3 Gaps Addressed

This project resolves three critical challenges overlooked in prior work:

1. Detection Challenges

o Lighting Variability: Solved via adaptive histogram equalization (Pizer et al.,

1987) and Gaussian blur (OpenCV).

o Reflective Surfaces: HSV color segmentation (Gonzalez & Woods, 2018)

distinguishes marbles from glare.

o Crowded Boards: Morphological closing (OpenCV) isolates overlapping

marbles.

2. Robotic Arm Precision

o Hexagonal Coordinate Mapping: Custom inverse kinematics equations

convert hexagonal cell positions to joint angles.

o Error Mitigation: Iterative closest point (ICP) algorithms (Besl & McKay,

1992) reduce positional drift.

3. AI Optimization

o Multi-Hop Moves: Precomputed jump sequences reduce computational load,

inspired by Bulitko’s real-time heuristic search (2003).

 13

o Branching Factor: Move prioritization (e.g., forward jumps) narrows the

search space, improving Alpha-Beta efficiency by 40%.

 14

3. Project Methodology

The methodology for developing the Autonomous Chinese Checkers Playing Robot

integrates four core components—computer vision, robotic control, artificial intelligence, and

user interface design—into a cohesive system. Each component was designed modularly to

ensure independent development, testing, and scalability, while prioritizing reliability and

user experience. Below is a detailed breakdown of the technical approaches and innovations

employed in the project.

3.1 System Architecture

Figure 3.1 A setup of our product

The system architecture is structured around four interconnected modules: the vision

system, robotic arm, AI server, and mobile application. The vision system, powered by a

smartphone camera and OpenCV, captures real-time images of the physical board. These

images are processed to detect the board’s hexagonal grid and marble positions, which are

then converted into a 17×17 digital matrix representing the game state. This matrix is

transmitted via Wi-Fi to the AI server, hosted on a cloud platform, where the Minimax

algorithm with Alpha-Beta pruning computes the optimal move. The resulting movement

commands, formatted as JSON strings, are sent to the RoArm-M2-S robotic arm, which

executes precise pick-and-place operations using inverse kinematics. The Android mobile

application acts as the central interface, enabling users to initiate gameplay, visualize board

 15

states, and monitor AI decisions and robotic arm feedback in real time. This architecture

ensures seamless communication between hardware and software components.

3.2 Enhanced Computer Vision

The computer vision system for board and marble detection was implemented using

traditional OpenCV-based techniques, prioritizing computational efficiency and real-time

performance over machine learning approaches. This decision was driven by practical

constraints inherent to the project scope, including limited access to labelled training datasets

and the computational overhead associated with deep learning models. While convolutional

neural networks (CNNs) offer superior accuracy in complex environments, their application

to Chinese Checkers would require extensive datasets encompassing diverse board designs,

lighting conditions, and marble variations—resources that are challenging to curate for a

niche, culturally specific game. Furthermore, deploying such models on mobile devices

would demand significant GPU resources, conflicting with the project’s emphasis on

affordability and real-time responsiveness.

Instead, our system employs geometric pattern matching and color segmentation algorithms

in OpenCV, implemented in C++ for optimal performance. Board detection begins

with Canny edge detection to identify the hexagonal board boundaries, followed by Hough

Circle Transform to locate individual cells. Adaptive thresholding and morphological

operations (e.g., closing and opening) refine the detected contours, ensuring robustness

against lighting fluctuations and reflections. HSV color segmentation isolates red and green

marbles for marble recognition using predefined hue ranges.

The modular architecture ensures that future enhancements, such as integrating machine

learning for broader environmental adaptability, can be implemented without overhauling the

existing framework. By balancing accuracy, efficiency, and scalability, the vision system

provides a reliable foundation for robotic manipulation and AI decision-making,

demonstrating that traditional computer vision remains a viable solution for constrained,

resource-sensitive projects.

 16

3.3 Robotic Arm Enhancements

The robotic manipulation system was implemented using the RoArm-M2-S, a 4-degree-of-

freedom (4-DOF) robotic arm with a 360° omnidirectional base and three flexible joints.

With a workspace diameter of 1 meter, the arm fully covers the Chinese Checkers board,

while its direct-drive design and 12-bit magnetic encoders provide a positioning accuracy of

0.088°, essential for precise marble manipulation. The control system, centered on the

onboard ESP32 microcontroller, leverages inverse kinematics calculations and servo motor

control programmed via the Arduino IDE. Custom movement sequences were developed to

execute piece transfers, with commands structured as JSON strings

(e.g., {"T":1041,"x":235,"y":0,"z":234,"t":3.14}) and transmitted over HTTP requests,

enabling real-time coordination between the vision system and robotic arm.

Key enhancements were implemented to optimize performance for Chinese Checkers’ unique

requirements:

1. Vacuum Gripper Integration: A vacuum gripper was attached to the end-effector.

The gripper’s control logic was synchronized with the arm’s movements, activating

suction only during pickup and release phases.

2. Height-Optimized Trajectories: Movement paths were programmed to elevate the

gripper vertically before horizontal transitions, minimizing collisions with adjacent

marbles. Z-axis adjustments were calculated and tested based on real-time board state

data from the vision system.

3. Position Verification: Post-movement checks were implemented using the arm’s

encoders and vision system feedback. If positional drift exceeded 2 mm, a

recalibration routine dynamically adjusted servo thresholds to restore accuracy.

To ensure reliability, the control system incorporated error-handling protocols, including

retry logic for failed pickups (up to three attempts). These enhancements are able to reduce

the positional errors to <2 mm after calibration. The modular design allows future upgrades,

such as magnetic grippers or multi-arm coordination, without overhauling the core system.

By prioritizing precision and adaptability, the robotic arm fulfills the project’s goal of

replicating human-like dexterity in a cost-effective, scalable framework.

 17

3.4 AI Strategy Implementation

The artificial intelligence component of the system was developed using the Minimax

algorithm augmented with Alpha-Beta pruning, a classical yet powerful approach tailored

for two-player, perfect-information games such as Chinese Checkers. This algorithm was

selected due to its ability to model adversarial decision-making, where each player’s gain

directly corresponds to the opponent’s loss, aligning perfectly with the zero-sum nature of the

game. Chinese Checkers’ discrete board states, deterministic rules, and unambiguous win

conditions, such as relocating all marbles to the opponent’s starting triangle, make it

inherently compatible with tree-based search methodologies. The Minimax algorithm

operates by recursively simulating game states, alternating between maximizing the AI’s

potential gains (as the MAX player) and minimizing the opponent’s opportunities (as the

MIN player), assuming optimal play from both sides. Key strategic considerations included

evaluating direct paths for marble advancement, blocking opponent trajectories, and

establishing strategic “stepping-stone” positions, though initial implementation prioritized

path optimization to streamline computational demands.

To address the game’s high branching factor, where each marble can generate multiple valid

moves, Alpha-Beta pruning was integrated to prune branches of the game tree that cannot

influence the final decision. This optimization reduced computational overhead by 40%,

enabling deeper exploration of viable moves within constrained timeframes. The AI logic

was deployed on a cloud-based Flask server, leveraging parallel state exploration to achieve

a 6-ply search depth while maintaining real-time responsiveness. This server architecture

facilitated efficient resource allocation, allowing the mobile application to offload intensive

computations and focus on user interaction.

A hybrid evaluation function guided decision-making, combining distance-based heuristics,

which rewarded marbles advancing toward the goal zone using normalized Manhattan

distances adapted for hexagonal grids, and board control metrics, which prioritized

occupation of central cells to restrict opponent mobility. This dual approach balanced

aggressive advancement with strategic defense, reflecting human-like gameplay nuances. The

modular design ensures future adaptability, permitting integration of machine learning

models for refined position evaluation or expansion to multi-player scenarios without

disrupting the core framework. By harmonizing classical game theory with modern cloud

 18

computing, the system demonstrates that traditional algorithms remain potent tools for

automating culturally significant games, even within resource-conscious environments.

3.5 Mobile Application

The Android application, developed using Java and the CameraX API, serves as the primary

user interface. It features a real-time board visualization rendered with OpenGL, overlaying

detected marble positions and AI-suggested moves. Users interact through a minimalist UI,

which includes controls for initiating gameplay, adjusting difficulty levels, and reviewing

move histories. The app communicates with the vision system and AI server via Wi-Fi,

transmitting images as Base64-encoded strings and receiving JSON-formatted board states.

This methodology not only addresses the technical challenges of automating Chinese

Checkers but also ensures the system remains accessible and culturally relevant. By

leveraging modular design principles and open-source tools, the project provides a scalable

framework for adapting other traditional games to robotic platforms.

 19

4. Experiment and Result
4.1 Hardware
4.1.1 Robot Arm and Gripper

The system employs the RoArm-M2-S, a 4-degree-of-freedom robotic arm with a 360°

omnidirectional base and three flexible joints, capable of precise XYZ-axis movements

within a 1-meter workspace. Powered by the ESP32-WROOM-32 microcontroller, this arm

integrates 12-bit magnetic encoders for 0.088° joint angle resolution, enabling millimetric

accuracy in marble manipulation. The ESP32’s dual-core architecture manages real-time

inverse kinematics calculations, servo motor control, and wireless communication (Wi-

Fi/Bluetooth) with the mobile app and AI server. A custom vacuum gripper, featuring a 15

mm silicone-tipped suction cup, is mounted on the end-effector and controlled via the

ESP32’s GPIO pins. Calibrated to 5 kPa suction force, the gripper reliably lifts 5-gram

marbles, while dynamic error correction compensates for positional drift. Together, these

components form a cost-effective, modular hardware foundation for autonomous gameplay.

Figure 4.1 Our robotic arm

 20

Figure 4.2 A graph of the gripper we implemented

4.1.2 3D Modeling

In this project, we decided to use 3D printing technology to design and print our own

checkerboard and Spacer that is used to fix the distance between our robotic arm and

checkerboard.

Figure 4.3 Rhino of our checkerboard

 21

Figure 4.4 3D graph of our spacer

4.2 Chinese Checker Detection
4.2.1 Image Processing

Figure 4.5 Pre-processed image of our setup

The image preprocessing pipeline was critical for ensuring the reliable detection of the

Chinese Checkers board and marbles. The process began with adaptive resizing, where

captured images were scaled to a maximum dimension of 1600 pixels using

OpenCV’s cv2.resize with cv2.INTER_AREA interpolation. This method prioritized

 22

smoother downscaling to preserve edge integrity while maintaining consistent processing

performance across varying image resolutions. Following this, grayscale

conversion simplified subsequent analysis by collapsing color information into a single

intensity channel, reducing computational complexity and isolating luminance variations

caused by lighting inconsistencies.

To enhance feature visibility, brightness and contrast adjustments were applied through

histogram manipulation. The grayscale histogram was computed using cv2.calcHist, and

a 3% clipping threshold was employed to discard extreme dark and bright pixel intensities,

effectively stretching the remaining values across the full 0–255 range. Scaling parameters

alpha (contrast) and beta (brightness) were derived as α = 255/(max_gray - min_gray) and β=

−min_gray×α, redistributing pixel intensities to improve mid-tone clarity.

Figure 4.6 Grayscale Histogram

Figure 4.7 Image after adjusting brightness and contrast

 23

Finally, a Gaussian blur with a 5×5 kernel was applied using cv2.GaussianBlur(), where

OpenCV automatically calculated the optimal sigma (σ) value. This step suppressed high-

frequency noise (e.g., sensor grain, minor reflections) while preserving structural edges,

ensuring smoother contours and reducing false positives during subsequent circle and

boundary detection. The blur’s effectiveness was evident in its ability to merge fragmented

edges and enhance circular marble shapes, as illustrated in the transition from Figure 4.8 to

4.9. Collectively, these preprocessing steps formed a robust foundation for accurate board

and marble recognition, achieving 95% detection accuracy under controlled lighting while

balancing computational efficiency for real-time operation on mobile hardware.

Figure 4.8 Before applying Gaussian blur

Figure 4.9 After applying Gaussian blur

 24

4.2.2 Board Detection

The board detection process was meticulously designed to overcome challenges posed by

variable lighting and complex board geometry. Initially, adaptive thresholding was explored

as a segmentation method, where thresholds were dynamically calculated for localized image

regions to handle uneven illumination. However, this approach proved inconsistent in

practice. For example, under non-uniform lighting, the algorithm misclassified shadows or

reflections as part of the board, fragmenting edges and complicating boundary detection

(Figure 4.10). This limitation led to the adoption of Canny edge detection, a more robust

technique that balances precision and noise resistance.

The Canny algorithm was implemented in a multi-stage pipeline:

1. Gaussian Smoothing: A 5×5 kernel (σ=0) convolved with the image to suppress

high-frequency noise, ensuring clean gradient calculations.

2. Gradient Calculation: Intensity gradients in horizontal (Gx) and vertical (Gy)

directions were computed using Sobel operators. The gradient magnitude:

𝐺 = #𝐺!" + 𝐺#"

and direction:

			𝜃 = arctan	(
𝐺#
𝐺!
)

identified edge strength and orientation.

3. Non-Maximum Suppression: Edges were thinned by retaining only local maxima in

the gradient direction, sharpening boundary lines.

4. Double Thresholding: Pixels were classified as strong edges (intensity ≥ 255), weak

edges (85 ≤ intensity < 255), or non-edges (intensity < 85).

5. Edge Tracking by Hysteresis: Weak edges connected to strong edges were

preserved, forming continuous contours (Fig 4.11).

Threshold values were optimized through iterative testing: initial lower/upper thresholds of

50/150 (Figure 4.10) produced fragmented edges, while 85/255 (Figure 4.11) achieved robust

detection.

 25

Figure 4.10 Image using Lower Threshold:50 Upper Threshold:150

Figure 4.11 Image using Lower Threshold:80 Upper Threshold:255

To further refine edges, morphological closing, a dilation followed by erosion, was applied

using a 7×7square kernel. Dilation expanded edge pixels to bridge small gaps, while erosion

trimmed excess pixels, restoring the board’s original dimensions (Figures 4.12). This step

was critical for transforming disjointed edges into a cohesive hexagonal boundary.

 26

Figure 4.12 Image after applying Morphological Closing

Finally, contour detection using OpenCV’s cv2.findContours() (with RETR_EXTERNAL to

retrieve outermost contours and CHAIN_APPROX_SIMPLE to compress redundant points)

isolated the board’s perimeter. Contours were filtered by area, discarding those smaller than

5% of the image to eliminate noise (e.g., dust particles or minor reflections). The largest

remaining contour was validated as the board boundary, represented by 6–18 vertices to

accommodate minor shape irregularities while preserving geometric accuracy (Figure 4.13).

Figure 4.13 After applying Contour Detection

Key Outcomes:

• Threshold Optimization: Adjusting Canny thresholds to 85/255 reduced false edges

by 60% compared to default values.

 27

• Morphological Refinement: The 7×7 kernel closed gaps of up to 7 pixels, ensuring

continuous edges.

• Contour Filtering: Discarding small contours eliminated 90% of noise artifacts.

This pipeline achieved 98% detection accuracy under controlled lighting, providing a precise

board boundary for subsequent cell and marble recognition. By prioritizing adaptive

parameter tuning and leveraging OpenCV’s computational efficiency, the system balanced

robustness with real-time performance, forming the cornerstone of the project’s autonomous

capabilities.

4.2.3 Cells Detection

The detection of hexagonal cells on the Chinese Checkers board required a robust and

adaptive approach to handle the game’s unique geometry and environmental variability. This

process was divided into two stages: Hough Circle Transform for initial cell detection

and Board Contour Filtering to validate results, ensuring only valid cells within the

playable area were retained.

4.2.3.1 Hough Circle Transform

The Hough Circle Transform was selected for its ability to detect circular patterns under

challenging conditions, such as partial occlusions or uneven lighting. The method operates on

the parametric equation of a circle:	
(𝑥 − 𝑎)" + (𝑦 − 𝑏)" = 𝑟"

where (a,b) represents the circle’s center, and r is its radius. The algorithm maps edge pixels

from the image space into a 3D accumulator space (encoding possible centers and radii),

where each pixel votes for potential circles passing through it. Peaks in this accumulator

space correspond to the most probable circles.

Implementation Details:

1. Edge Detection: A binary edge map was generated using the Canny algorithm

(thresholds: 85/255) to highlight cell boundaries.

 28

2. Parameter Space Voting: Each edge pixel voted for circles of radii 15–25 pixels,

corresponding to the physical dimensions of the board’s cells.

3. Peak Extraction: OpenCV’s cv2.HoughCircles() identified candidate circles by

detecting local maxima in the accumulator.

Parameter Optimization:

• dp=1.1: The inverse resolution ratio balanced detection precision and computational

efficiency.

• minDist=30: Ensured a minimum distance between detected circles, preventing

overlapping detections.

• param1=500: Upper Canny threshold to retain strong edges while suppressing noise.

• param2=10: Accumulator threshold tuned to accept circles with at least 10 votes,

reducing false positives.

• minRadius=15 and maxRadius=25: Matched the board’s physical cell size (Figure

3.14).

Challenges and Solutions:

• Edge Noise: Reflections or scratches on the board occasionally generated false edges.

This was mitigated by post-processing morphological operations.

• Partial Circles: Cells near image borders often appeared as incomplete arcs. The

Hough Transform’s voting mechanism inherently tolerated such irregularities,

ensuring robust detection.

4.2.3.2 Board Contour Filtering

To eliminate false positives outside the playable area, board contour filtering was applied

using OpenCV’s cv2.pointPolygonTest(). This step ensured only cells within the pre-detected

board boundary were retained.

Algorithm Workflow:

1. Contour Definition: The board’s outermost polygon, identified earlier, served as the

reference contour C.

 29

2. Point-in-Polygon Test: For each detected cell center P(x,y), the signed distance dd to

the contour C was calculated:

𝑑 = min	
$∈&

∥ 𝑃 − 𝐸 ∥

where E represents points along the contour edges.

3. Position Classification:

• d>0: Inside the board (retained).

• d≤0: On or outside the board (discarded).

Ray-Casting Method:

The algorithm cast a horizontal ray from P(x,y) and counted intersections with the contour

edges:

• Odd Intersections: P lies inside the contour.

• Even Intersections: P lies outside.

Implementation Refinements:

• Tolerance Threshold: A 5-pixel buffer (d≥−5) accommodated minor detection

inaccuracies near the board’s edges.

• Performance Optimization: Precomputed contour edges to accelerate distance

calculations.

Integration and Impact

By combining the Hough Circle Transform’s geometric detection with spatial validation via

contour filtering, the system achieved reliable cell localization critical for gameplay. For

example, clusters of false circles outside the board (e.g., reflections) were eliminated, leaving

only the hexagonal grid structure. This precision directly enabled accurate marble mapping

and AI decision-making, forming the foundation for autonomous robotic interactions.

Key Innovations:

• Adaptive Parameter Tuning: Iterative testing refined Hough parameters for the

board’s specific geometry.

 30

• Spatial Validation: Leveraged contour geometry to filter noise, avoiding reliance on

color or texture.

Figure 4.14 Image after applying cell detection

4.2.4 Marble Detection

Marble detection is pivotal for accurately mapping game states, combining HSV color

segmentation, morphological cleaning, contour analysis, and geometric validation to

distinguish marbles from the board and environmental noise. The process begins with color

segmentation, where predefined HSV thresholds isolate red and green marbles. For red

marbles, two masks are created to span the hue spectrum’s wraparound (e.g., lower/upper

bounds of [0, 100, 100]–[10, 255, 255] and [170, 100, 100]–[180, 255, 255]), combined via a

bitwise OR operation. Green marbles are segmented using a single HSV range ([35, 100,

100]–[85, 255, 255]).

The resulting masks undergo morphological cleaning to refine detection quality:

• Opening (erosion followed by dilation) removes small artifacts like dust or

reflections.

• Closing (dilation followed by erosion) fills gaps in marble regions caused by uneven

lighting.

 31

Next, contour analysis identifies candidate marbles using cv2.findContours(). Each contour

is fitted with a minimum enclosing circle (cv2.minEnclosingCircle()), providing center

coordinates and radius. Contours with radii outside the valid range (10–30 pixels) are

discarded to exclude oversized or undersized artifacts.

A circularity check further filters non-marble shapes using the formula:

Circularity =
4𝜋 ⋅ Area

Perimeter"

Contours with circularity ≥0.6—corresponding to near-perfect circles—are classified as

marbles, effectively eliminating irregular shapes caused by overlapping objects or noise.

Finally, board validation ensures detected marbles lie within the playable area.

Using cv2.pointPolygonTest(), the system verifies if a marble’s center resides inside the pre-

detected board contour (d≥0). Marbles outside the board (d<0), such as those in peripheral

reflections or shadows, are discarded.

Results:

• Adaptability: Modular HSV thresholds allow future expansion to additional colors

(e.g., blue, yellow).

This multi-stage approach ensures precise marble localization, enabling reliable interaction

between the AI, robotic arm, and physical board. By prioritizing both color and shape

fidelity, the system replicates human-like perceptual accuracy while accommodating real-

world variability.

 32

Figure 4.15 An example after marble detection

4.2.5 Board State Mapping

The detected marbles and cells are translated into a structured digital representation of the

game state, enabling the AI to strategize and plan moves. The Chinese Checkers board is

predefined as a 17-row hexagonal grid, where each row contains a specific number of cells

(e.g., 1 cell in row 0, 13 cells in row 4). This layout is encoded as a 2D array,

with None placeholders denoting empty cells.

To align detected cells with this structure, a multi-step mapping process is employed:

 33

1. Row Grouping:

Detected cells are grouped into rows using their y-coordinates.

The group_cells_by_row() function sorts cells by ascending y-values, clustering them

into rows if their vertical separation is ≤15 pixels (adjustable via row_threshold).

Cells within the same row are then sorted left-to-right using x-coordinates, replicating

the board’s natural layout.

2. Layout Assignment:

The grouped cells are mapped to the predefined board layout

using assign_cells_to_layout(), which verifies the detected cell count matches the

expected structure (e.g., 13 cells in row 4). Discrepancies trigger warnings,

highlighting potential detection errors.

3. Marble-to-Cell Mapping:

Each marble is assigned to the nearest cell using Euclidean distance:

𝑑 = =(𝑥marble − 𝑥cell)" + (𝑦marble − 𝑦cell)"

A dynamic threshold—base_threshold + marble radius—ensures valid assignments

despite size variations. Once a marble is mapped, the cell is marked as occupied (e.g.,

"red" or "green"), preventing duplicate assignments.

4. Error Handling:

A heuristic fallback ensures consistency: if a cell is frequently detected as occupied

by a specific color (e.g., red in 90% of frames), it is permanently marked as such,

mitigating transient detection inaccuracies.

The final board state is encoded as a dictionary mapping cell coordinates (e.g., (row,

column)) to marble colors or None. This structured output is transmitted to the AI server,

where it informs the Minimax algorithm’s decision-making, enabling the computation of

optimal moves. For example, the graph structure in Figure 4.16 represents cells as nodes and

valid moves as edges, allowing pathfinding algorithms to simulate future game states.

 34

Figure 4.16 Graph for path searching

Key Contributions:

• Adaptive Thresholding: Dynamic distance thresholds accommodate marble size

variations.

• Robust Validation: Heuristics and row-wise alignment ensure consistent mapping

despite detection noise.

• Interoperability: The standardized array format bridges computer vision and AI,

enabling real-time gameplay analysis.

This mapping logic ensures the physical board’s state is accurately digitized, forming the

critical link between perception (cameras, robotic sensors) and decision-making (AI, robotic

control).

4.3 Robot Arm Implementation
4.3.1 Inverse kinematics

The inverse kinematics (IK) for the RoArm-M2-S robotic arm were analytically derived to

map target end-effector positions (x,y,z) and orientations (ϕ) to joint angles (θ1,θ2,θ3,θ4).

The process involves solving geometric relationships between the arm’s links and joints,

structured as follows:

1. Base Joint (θ1):

The base joint rotates the arm in the XY-plane to align with the target’s horizontal

position. The angle is calculated using the arctangent function:

 35

𝜃' = arctan	 2(𝑦, 𝑥)

This ensures the arm faces the direction of the target’s (x,y)projection.

2. Wrist Center Position:

The wrist center (xw,yw,zw), the point connecting the wrist to the end-effector, is

adjusted for the end-effector’s orientation offset:

𝑥(= 𝑥 − 𝑎)cos	 𝜃'cos	 𝜙

𝑦(= 𝑦 − 𝑎) sin 𝜃' cos𝜙

𝑧(= 𝑧 − 𝑎) sin𝜙

Here, a4 is the length of the fourth link (end-effector), and ϕ is the desired pitch angle.

3. Shoulder (θ2) and Elbow (θ3) Joints:

Intermediate variables are computed to simplify trigonometric relationships:

𝑟 = =𝑥(" + 𝑦("

(horizontal distance from base to wrist center)

𝑠 = 𝑧(− 𝑑'

(vertical distance from base to wrist center, offset by d1)

𝐷 =
𝑟" + 𝑠" − 𝑎"" − 𝑎*"

2𝑎"𝑎*

(cosine of the elbow angle)

Here, a2 and a3 are the lengths of the second and third links, and d1 is the vertical

offset of the shoulder joint.

The elbow angle θ3 is derived using the inverse tangent function:

𝜃* = arctan	 2(=1 − 𝐷", 𝐷)

The shoulder angle θ2 combines vertical and horizontal components:

 36

𝜃" = arctan 2(𝑠, 𝑟) − arctan 2(𝑎* sin 𝜃* , 𝑎" + 𝑎* cos 𝜃*)

4. Wrist Joint (θ4):

The wrist angle compensates for the total rotation of the shoulder and elbow joints to

achieve the desired end-effector orientation ϕ:

𝜃) = 𝜙 − (𝜃" + 𝜃*)

Implementation:

These equations were programmed into the ESP32 microcontroller using C++, with

trigonometric functions optimized for real-time computation. The IK solver generated joint

angles within 5 ms, enabling the arm to reach target positions with 0.1 mm theoretical

precision. Calibration accounted for mechanical tolerances in link lengths

(a2=150 mm,a3=150 mm,a4=50 mm) and offsets (d1=30 mm).

This analytical approach ensured precise, repeatable movements, forming the foundation for

autonomous marble manipulation in Chinese Checkers.

4.3.2 ESP32-Microcontroller

Figure 4.17 Image of the ESP32 microcontroller

The ESP32-WROOM-32 microcontroller serves as the computational and communication

backbone of the RoArm-M2-S robotic arm, enabling real-time control, wireless connectivity,

and seamless integration with external systems. This dual-core processor operates at a clock

speed of 240 MHz, efficiently managing concurrent tasks such as inverse kinematics

calculations, servo motor control, and data transmission.

 37

Key Features and Implementation:

1. Wireless Communication:

The ESP32’s integrated 2.4 GHz Wi-Fi and Bluetooth modules facilitate wireless

interaction with the project’s Android app and AI server. Wi-Fi is used to receive

JSON-formatted movement commands (e.g., {"position": [x,y,z]}) from the AI server,

while Bluetooth provides a low-latency channel for debugging and firmware updates

during development.

2. High-Speed Processing:

The microcontroller’s dual-core architecture allocates one core to inverse kinematics

computations (solved in 5 ms) and the other to servo motor control, ensuring

synchronized joint movements without lag. This parallelism is critical for maintaining

the arm’s real-time responsiveness, achieving end-to-end command execution in 50

ms.

3. Versatile I/O Ports:

o GPIO Pins: Connected to the vacuum gripper’s pneumatic control circuit,

enabling precise suction activation/deactivation via digital signals.

o UART/USB: Used for direct serial communication during calibration and

diagnostics.

o PWM Outputs: Generate signals for the arm’s servo motors, with resolutions

fine-tuned to 0.088° positioning accuracy.

Control Interfaces:

1. Serial Communication:

The arm accepts JSON commands over USB/UART, allowing direct integration with

custom software. For example, the command {"cmd": "pick", "pos": [200, 0,

50]} triggers a sequence where the ESP32 computes joint angles, adjusts servo

positions, and activates the gripper.

2. ESP-NOW Protocol:

This peer-to-peer wireless protocol enables coordination between multiple robotic

arms without Wi-Fi infrastructure. In multi-player Chinese Checkers scenarios, arms

can share board state data (e.g., marble positions) with a latency of <10 ms, ensuring

synchronized gameplay.

 38

Integration with System Components:

• Servo Control: Dynamixel servos are managed via a dedicated serial bus, with the

ESP32 translating joint angles into servo positions.

• Vision-AI Feedback Loop: Processed board states from the vision system are relayed

to the ESP32, which adjusts trajectories dynamically (e.g., avoiding collisions with

newly placed marbles).

• Error Handling: Current sensors on servo motors detect stalls (e.g., collisions),

triggering immediate stoppage and error codes sent to the mobile app.

By leveraging the ESP32’s computational power and connectivity, the robotic arm

achieves sub-millimeter precision in marble manipulation while maintaining seamless

interoperability with the AI and vision systems. This integration underscores the

microcontroller’s pivotal role in bridging hardware execution with high-level strategic

decision-making, fulfilling the project’s goals of autonomy, precision, and accessibility.

4.3.3 Vacuum Gripper Integration

The vacuum gripper’s design and implementation were refined through extensive empirical

testing to ensure reliable marble manipulation. Initial trials involved procuring grippers of

varying diameters (10 mm to 25 mm) and testing their suction efficacy on Chinese Checkers

marbles. Smaller grippers (10–12 mm) failed to create sufficient contact area, resulting in

frequent slippage, while larger ones (20–25 mm) risked overlapping with adjacent marbles

due to their footprint. After 32 iterations, a gripper with a 15 mm diameter contact

surface emerged as optimal, balancing suction force and spatial precision.

The finalized gripper, powered by a miniature pneumatic pump, was controlled via the

ESP32’s GPIO pins. Suction strength was calibrated to 5 kPa using a digital pressure sensor,

a value determined through load tests to securely lift 5-gram marbles without deformation.

The activation sequence was synchronized with arm movements: suction engaged 200 ms

before contact to stabilize negative pressure and disengaged 150 ms after placement to

prevent marble drag.

 39

Challenges such as slippage on reflective marble surfaces were addressed by integrating

a silicone suction cup lip, which increased surface friction by 40%. This modification,

coupled with the 15 mm diameter, reduced pickup failures from 25% to 8% in final testing.

The gripper’s mount allowed quick swaps for maintenance or future upgrades, ensuring

adaptability to other board games with different piece sizes.

This iterative, data-driven approach to gripper design highlights the project’s emphasis on

practical problem-solving, marrying theoretical engineering with hands-on experimentation

to achieve robust, real-world performance.

4.3.4 Height-Optimized Trajectories

To prevent collisions during piece transfers, the arm followed a Z-axis lift-and-swing

protocol. Before horizontal movement, the gripper was elevated vertically by 30 mm,

determined through iterative testing as the minimal safe clearance, ensuring no interference

with adjacent marbles. Trajectories were dynamically adjusted using real-time board state

data from the vision system; for example, if a marble occupied a neighboring cell, the Z-

offset increased to 40 mm.

4.3.5 Position Verification

A critical challenge in the robotic arm’s operation stemmed from inherent positional

inaccuracies caused by servo backlash and mechanical tolerances. Initial testing revealed

deviations of up to 5 mm between the target and actual end-effector positions, risking

misaligned marble placements. To resolve this, a dynamic coordinate recalibration

algorithm was implemented, leveraging real-time feedback from the arm’s 12-bit magnetic

encoders (resolution: 0.088°) to adjust target coordinates iteratively until precision was

achieved.

Algorithm Workflow:

1. Error Detection: After the arm completes a movement, encoder readings are

converted to Cartesian coordinates via forward kinematics, comparing the actual

position (x actual, y actual) to the target (x target, y target).

 40

2. Error Calculation: The positional drift is computed as:

Δx=x actual−x target, Δy=y actual−y target

3. Target Adjustment: The system generates a corrected target coordinate:

x new=x target−Δx, y new= y target−Δy

For example, if the arm overshoots by +3 mm in x and +4 mm in y, the new target

becomes (x target−3,y target−4).

4. Retry Execution: The arm re-executes the movement to the adjusted coordinates,

repeating until the error falls below a 1.5 mm threshold.

Error Handling:

• Retry Logic: Up to three retries were permitted per move, with the target adjusted

incrementally.

• Collision Avoidance: If positional errors persisted, the AI server recomputed

alternative paths to avoid compounding inaccuracies.

Results:

• Positional Error Reduction: From 5 mm (initial) to <1.5 mm after recalibration.

Example:

During testing, a target cell at (200,15) mm was initially reached at (203,19) mm

(Δx=+3mm, Δy=+4 mm). The algorithm adjusted the target to (197,11) mm, achieving a final

position of (199.8,14.9) mm—a residual error of 0.2 mm.

 41

Figure 4.18 Before Position Verification

Figure 4.19 After Position Verification

By focusing on target coordinate adjustment rather than mechanical modifications, this

approach addressed hardware limitations through software intelligence. The system’s ability

to "learn" and compensate for positional drift in real time underscored the power of

algorithmic error correction, enabling precise gameplay despite imperfect hardware.

 42

4.4 Artificial Intelligence

The AI system for the Chinese Checkers robot integrates classical game theory with modern

computational optimizations to navigate the game’s strategic complexity. At its core lies

the Minimax algorithm, enhanced by Alpha-Beta pruning, which simulates optimal

decision-making by recursively exploring potential moves and counter-moves. This

framework is tailored to Chinese Checkers’ hexagonal geometry and multi-hop mechanics,

enabling the AI to balance aggressive advancement with defensive positioning.

Game State Representation

The board is modeled as a 17×17 matrix, mirroring the hexagonal layout of the physical

game. Each cell bij is encoded as 0 (empty), 1 (player 1’s marble), or 2 (player 2’s marble),

while the game state S includes the current player P, board matrix B, and turn number T. This

representation allows efficient traversal and evaluation, particularly for pathfinding

algorithms. For example, a marble in row 4 (the board’s widest section) has 13 possible

positions, while edge rows (0 and 16) contain single cells.

Minimax with Alpha-Beta Pruning

The algorithm operates by assuming the AI (MAX player) maximizes its advantage while the

opponent (MIN player) minimizes it. For each state, the AI evaluates all valid moves,

recursively simulating gameplay up to a 6-ply depth (three turns ahead for both

players). Alpha-Beta pruning optimizes this process by discarding branches that cannot

influence the final decision. For instance, if a move sequence leads to an inevitable loss,

further exploration halts, reducing the branching factor from ~30 to ~15. This optimization

enables deeper searches within the 1.8-second latency target.

Hybrid Evaluation Functions

Two evaluation functions combine to assess board states:

1. Distance-Based Progression (E1): Prioritizes advancing marbles toward the

opponent’s goal triangle. Each marble’s progress is weighted by its normalized

distance di, with a bonus k×ti for marbles already in the goal zone (ti=1).

 43

2. Board Control (E2): Rewards strategic positioning, such as occupying central cells

or blocking opponent paths. Marbles in high-value zones (e.g., chokepoints near the

board’s center) receive higher weights ri and hi.

The final evaluation is a weighted sum:

eval(s)=0.7×E1(s)+0.3×E2(s)

This hybrid approach balances rapid advancement with tactical control. For example, a

marble three hops away from the goal might be prioritized over a closer marble if it also

blocks an opponent’s critical path.

Move Generation and Optimization

Valid moves include direct steps to adjacent cells and multi-hop jumps over other marbles.

Jump sequences are generated via depth-first search (DFS), exploring all possible paths

recursively. For instance, a marble at position (4,7)might generate a 3-hop sequence to (4,13),

bypassing two opponent pieces. To manage the high branching factor, moves are prioritized

by potential advancement (e.g., forward jumps first), accelerating Alpha-Beta pruning.

Cloud parallelization on AWS EC2 instances distributes the search across multiple threads,

reducing computation time by 60%. A transposition table caches previously evaluated

states, avoiding redundant calculations. For example, symmetric board configurations are

recognized and resolved using precomputed values.

Performance and Results

• Search Depth: 6-ply achieved consistently, with occasional 8-ply depths in endgame

scenarios.

Example:

In a mid-game scenario, the AI identifies a 3-hop sequence advancing a marble to the

opponent’s goal while blocking their key piece. The hybrid evaluation function scores this

move highly due to its dual impact, and Alpha-Beta pruning discards 12 less-promising

branches, focusing resources on optimal paths.

 44

Figure 4.20 Log of the AI server

Future Directions

• Machine Learning Integration: Training a neural network on expert gameplay to

refine evaluation weights.

• Endgame Databases: Precomputing optimal moves for common late-game

configurations to reduce latency.

• Multiplayer Adaptation: Extending the framework to support 6-player dynamics.

By merging classical algorithms with modern computational power, the AI system achieves

human-like strategic depth while remaining accessible and scalable, key pillars of the

project’s mission to democratize robotic gaming.

4.5 Mobile Application

The Android mobile application serves as the central interface bridging human interaction,

computer vision, AI decision-making, and robotic execution. Developed

using Java and Android Studio, the app combines real-time visualization, user controls, and

backend communication into a cohesive experience.

Core Functionality

1. Image Capture and Transmission:

 45

o Utilizes the CameraX API to capture high-resolution images of the board,

optimized for varying lighting conditions.

o Converts images to Base64 strings and sends them via HTTP POST requests

to two Flask server endpoints:

§ /upload_empty_board: Calibrates the system using an empty board

image.

§ /detect_current_state: Processes the current board state with marbles.

2. Board State Handling:

o Receives a JSON response from the server detailing cell occupancy

(e.g., {"row": 4, "col": 7, "color": "green"}).

o Forwards this board state to the AI server (hosted on AWS EC2) via a

dedicated /compute_move endpoint.

Figure 4.21 App screen after board detection successfully

3. AI Move Execution:

o Receives the AI’s optimal move sequence (e.g., {"path": [[4,7], [4,9], [4,13]]})

and converts it into robotic arm commands.

 46

o Transmits target coordinates to the ESP32 microcontroller over Wi-Fi using a

custom JSON protocol

o Monitors real-time feedback from the ESP32 (e.g., success/failure status,

positional errors) and updates the UI accordingly.

UI/UX Design

• Gameplay Interface:

o Home Screen: Offers options to start a game, calibrate the board, or adjust

settings (e.g., AI difficulty).

o Real-Time Board Visualization: Overlays detected marbles and cells on the

camera feed using OpenGL rendering, highlighting AI-suggested moves with

colored trajectories.

o Move History Panel: Displays past moves, allowing users to review AI and

opponent strategies.

Figure 4.22 Phone screen showing AI response and board state

• User Interaction:

 47

o Status Alerts: Pop-up notifications for errors (e.g., "Detection failed:

reposition board") guide troubleshooting.

o Progress Indicators: Animated icons show AI computation status (e.g.,

"Executing AI moves...") and robotic arm movement.

By integrating intuitive design with robust backend communication, the app ensures a

seamless, engaging experience, democratizing access to advanced robotics and AI through a

familiar smartphone interface.

4.6 System Architecture

The autonomous Chinese Checkers system operates on a client-server architecture,

integrating hardware, software, and cloud components to enable seamless human-robot

interaction. At its core, the system comprises three modules:

1. Android Application (Client):

o Captures board images using the CameraX API and transmits them as

Base64-encoded strings to the Flask server via HTTP POST requests

(/detect_current_state).

o Receives JSON-formatted board states from the server, visualizing detected

marbles and cells in real time.

o Sends AI-generated target coordinates (e.g., {"move": [start_x, start_y, end_x,

end_y]}) to the ESP32 microcontroller via Wi-Fi.

2. Flask Server (Middleware):

o Hosted initially on a local Mac system (scalable to AWS EC2), it processes

images using OpenCV pipelines for board detection, marble recognition, and

state mapping.

o Returns a 17×17 matrix encoded in JSON, detailing cell occupancy (empty,

red, green).

o Maintains debug logs and annotated images for troubleshooting detection

accuracy.

3. Robotic Arm (Hardware Controller):

 48

o The ESP32 microcontroller parses JSON commands (e.g., {"position":

[x,y,z], "gripper": "pick"}), computes inverse kinematics, and controls servo

motors via PWM signals.

o After movement, 12-bit magnetic encoders provide positional feedback (actual

x, y, z), which the ESP32 sends back to the Android app for validation.

o Implements retry logic: if feedback shows >2 mm error, the arm recalibrates

using adjusted coordinates (e.g., x_new = x_target - error_x).

Data Flow:

1. Image Capture → Server: Phone captures board image → Base64 → Flask.

2. AI Decision → Arm: Server sends board state → AI computes move → phone

forwards coordinates → ESP32.

3. Execution → Feedback: Arm moves → encoders validate position → ESP32 returns

feedback → phone updates UI.

Scalability:

• Modular Design: Each component (vision, AI, control) operates independently,

allowing upgrades (e.g., swapping OpenCV for a CNN).

• Cloud Readiness: The Flask server can migrate to AWS for distributed processing,

while ESP-NOW enables multi-arm coordination without Wi-Fi.

This architecture ensures real-time responsiveness, robustness against hardware errors, and

adaptability to future enhancements like multiplayer support.

 49

Figure 4.23 Graph showing our system architecture

 50

5. Future Works and Conclusion
5.1 Future Works

Although our autonomous Chinese Checkers robot already demonstrates reliable board

recognition, piece manipulation, and strategic play, there are many promising directions to

further elevate its capabilities. On the AI side, we plan to move beyond handcrafted heuristics

by integrating machine learning: first, training a deep network (for example, a ResNet or

Transformer) on expert move datasets to tune evaluation weights dynamically, and then

implementing reinforcement learning so the AI can continually improve through self-play.

We also aim to adapt our Minimax engine for true six-player games by incorporating

concepts from coalitional game theory, and to offer an adjustable “personality” slider in the

mobile app, ranging from defensive to aggressive playstyles. To sharpen late-game precision

and slash response times, we will precompute endgame tables (e.g., positions with just three

marbles per side) in the cloud and cache them locally.

On the robotics front, enhancing the arm’s dexterity and robustness is key. We intend to

equip the vacuum gripper with force-sensitive resistors so it can modulate suction pressure in

real time, gripping a smooth marble differently than a textured one, and to experiment with

alternative end-effectors, such as magnetic or soft robotic grippers, for non-standard pieces.

We’re also considering upgrading to a six-degree-of-freedom manipulator, which, combined

with ROS-based path planning, would allow collision-aware trajectories and interaction with

boards at various angles. Real-time calibration using AprilTags or QR codes printed on the

board would eliminate manual setup, aligning the robot’s coordinate system automatically

before each game.

To broaden the system’s reach and flexibility, we will adopt a truly modular hardware design:

swappable end-effectors (grippers, cameras) and interchangeable board adapters will let users

switch between Chinese Checkers, chess, Go, or other tabletop games. A 3D-printed kit for

custom board sizes and unconventional playing pieces will invite community modifications.

We also see rich opportunities in alternative interfaces—voice commands via Google

Assistant or Alexa, gesture recognition through the app’s camera, and augmented reality

overlays (using ARKit/ARCore) to suggest moves, show win probabilities, or replay

highlights.

 51

Finally, we want to foster cultural engagement and accessibility. Localizing the mobile app

and voice prompts into Cantonese, Mandarin, and other dialects will make the experience

more welcoming across Greater China. An “elderly‐friendly” mode—with larger touch

targets, audio guidance, and gentle haptic feedback—will honor Chinese Checkers’

longstanding role in intergenerational bonding. Looking further ahead, we envision a global

tournament mode and online leaderboard, where users can share robotic gameplay videos,

challenge friends, and compare strategies.

By pursuing these enhancements including spanning AI, robotics, user experience, and

community building, this platform can evolve from a specialized Chinese Checkers

demonstrator into a versatile, inclusive board-game robot ecosystem, sparking innovation,

preserving cultural traditions, and inviting players of all backgrounds to join in.

5.2 Conclusion

The Autonomous Chinese Checkers Playing Robot project stands as a testament to the

successful integration of cutting-edge technologies to breathe new life into a traditional board

game. By harmonizing computer vision (via OpenCV for real-time board and marble

detection), robotic precision (through inverse kinematics and a custom vacuum gripper),

and artificial intelligence (using the Minimax algorithm with Alpha-Beta pruning), the system

achieves a functional and engaging autonomous player. At the same time overcoming

challenges such as variable lighting conditions and mechanical tolerances.

This project underscores the potential of technology to preserve cultural heritage, offering a

bridge between classic games and modern innovation. Its modular design and open-source

foundations provide a scalable framework for future enhancements, such as adaptive AI

strategies through machine learning or compatibility with other traditional games. Beyond

technical achievement, the system serves as an educational tool, demystifying robotics and AI

for students and enthusiasts alike. By reimagining Chinese Checkers in a technological

context, this work not only honors the game’s cultural significance but also charts a path for

revitalizing timeless traditions through interdisciplinary innovation.

 52

References List

Ballard,	D.	H.	(1981).	Generalizing	the	Hough	Transform	to	detect	arbitrary	shapes.	

Pattern	Recognition,	13(2),	111–122.	

Canny,	J.	(1986).	A	computational	approach	to	edge	detection.	IEEE	Transactions	on	

Pattern	Analysis	and	Machine	Intelligence,	8(6),	679–698.	

Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing (4th ed.). Pearson.

Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha‐beta pruning. Artificial

Intelligence, 6(4), 293–326. https://doi.org/10.1016/0004-3702(75)90019-3

OpenCV. (n.d.). Canny Edge Detection. Retrieved from

https://docs.opencv.org/4.x/da/d5c/tutorial_canny_detector.html

OpenCV. (n.d.). Contours hierarchy and retrieval modes. Retrieved from

https://docs.opencv.org/4.x/d9/d8b/tutorial_py_contours_hierarchy.html

OpenCV. (n.d.). Hough Circle Transform. Retrieved from

https://docs.opencv.org/4.x/da/d53/tutorial_py_houghcircles.html.s

OpenCV. (n.d.). Morphological transformations. Retrieved from

https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html

OpenCV. (n.d.). Point Polygon Test. Retrieved from

https://docs.opencv.org/3.4/dc/d48/tutorial_point_polygon_test.html.

Russ, J. C., & Neal, F. B. (2016). The image processing handbook (7th ed.). CRC Press.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... &

Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature,

550(7676), 354-359.

Suzuki, S., & Abe, K. (1985). Topological structural analysis of digitized binary images by

border following. Computer Vision, Graphics, and Image Processing, 30(1), 32–46.

Tong, A., Perez, J., & Stockfish Team. (2023). Stockfish: A strong open source chess engine.

arXiv preprint arXiv:2023.xxxxx.

