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i. Abstract 

The rapid advancement of technology is transforming online information retrieval, particularly 

through the emergence of chatbots powered by large language models (LLMs) that challenge 

traditional search engines, which often produce less concise results and can be influenced by 

search engine optimization techniques. This report proposes an innovative cross-platform web 

search application that utilizes LLMs to enhance the quality of search results retrieved from 

search engine APIs. The project aims not only to generate concise summaries of search results 

retrieved from search engines but also to reorder them based on content relevance, while 

possibly mitigating the limitations associated with LLM-powered chatbots, including their 

knowledge cutoff dates and the hallucination problem where LLMs sometimes present false 

information as the truth to users. The preliminary prototype, which utilizes the Bing Search 

API alongside DeepSeek-V3, generates LLM-based summaries of search results and 

demonstrates the proposed method’s potential to address user needs more effectively than 

traditional search engines and LLM-powered chatbots. This approach could pave the way for 

more reliable and user-centric information retrieval systems that can meet the evolving 

demands of users. 
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1.  Introduction 

The rapid evolution of technology is transforming how users seek information online. 

According to Gartner [4], AI-powered chatbots are expected to increasingly replace traditional 

search engines like Google in the coming years. These chatbots often utilize large language 

models (LLMs) such as ChatGPT and Claude, which are pre-trained language models that use 

the probability of word sequences in their training data to generate outputs [5]. Unlike 

conventional search engines that display a list of links, chatbots offer concise and direct 

answers to their queries, thus enhancing the efficiency of users’ search experience. 

While LLM-powered chatbots offer advantages in information retrieval, they also present 

significant challenges. One primary concern is that chatbots rely on LLMs, which typically 

have a knowledge cutoff date, rendering them unable to provide the most up-to-date 

information. For instance, the knowledge cutoff for GPT-4o-Mini is October 2023 [6]. This 

limitation can hinder users seeking current information, as illustrated in Fig. 1.1 where GPT-

4o-Mini failed to provide information about the Prime Minister of the United Kingdom in 2024 

due to the cutoff date. 

 

Fig. 1.1 Screenshot from Poe with GPT-4o-Mini [1], indicating it can't answer questions 

about current events beyond the knowledge cutoff. 

Moreover, while some chatbots like Perplexity leverage current web sources to mitigate the 

knowledge cutoff issue, all LLM-powered chatbots ultimately face a critical problem: 

hallucinations. Hallucinations occur when LLMs generate inaccurate or misleading 

information, which can mislead users. Research by Yao et al. [7] highlights the vulnerability of 

LLMs to adversarial attacks, achieving a success rate of 53.85% against LLaMA2-7B-chat. 

They further suggest that hallucinations may be an inherent flaw in LLMs, making their 

eradication a complex challenge.  

Additionally, the user interface (UI) of many chatbots, such as Poe, often lacks source 

attribution for the information provided and presents their answers as the absolute truth. Some 
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chatbots, like Perplexity, display sources alongside their answers but still predominantly 

portray their summaries as definitive by not providing any alternative result (see Fig. 1.2). This 

can lead users to accept chatbot responses without critical evaluation or verification of the 

information, which may be inaccurate or false due to the hallucination problem. 

  

Fig. 1.2 Screenshot from Perplexity [2] showing the query, presenting the current answer and 

sources, but doing so in a way that may suggest it as the sole truth. 

Conversely, traditional search engines like Google and Bing present results as a list of links 

and brief descriptions. They face ongoing challenges related to search engine optimization 

(SEO) tactics and spam content. A comprehensive review of major search engines conducted 

between 2022 and 2023 [8] revealed that top-ranking results often prioritize SEO strategies 

that may compromise content quality. As of October 1, 2024, Google has implemented two 

spam updates and two core updates in an effort to enhance search quality [9]. However, findings 

[8] indicate that these updates only temporarily alleviate spam issues, leaving users with a 

subpar search experience between updates. 

Furthermore, traditional search engines can struggle with complex queries, often requiring 

users to sift through multiple results to find relevant information. For example, when querying 

“generate multiple HTML and CSS files in Vite,” GPT-4o mini provided detailed, tailored 

responses, while Google’s top results included links to forums like Stack Overflow, which may 

not address the users’ specific needs (see Fig. 1.3). 

Given the strengths and weaknesses of both chatbots and traditional search engines, this project 

aims to develop an innovative cross-platform web search application. The application will 

retrieve search results from search engine APIs such as the Bing Web Search API.  
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Fig. 1.3 (Left) Prompt result from Poe with GPT-4o-Mini [1] with prompt “generate multiple 

html and css files in vite”. (Right) Search result from Google with a search query same as the 

GPT-4o-Mini prompt. 

results. Then, the system will generate concise summaries for each individual result alongside 

a comprehensive overview of the search query. 

The deliverables for this project will include: 

1. a responsive web application and a mobile application in the form of a .apk file that 

will serve as the primary interfaces for users,  

2. a backend system to support data storage and processing, and 

3. evaluations that determine the best prompting strategies and LLMs for the project, as 

well as the effectiveness of the application. 

The next section of this report outlines the methodology (Sec. 2) that will guide the project 

from conception to deployment. It covers design considerations and implementation strategies 

for both the frontend and backend, followed by the evaluation metrics. Subsequently, the report 

presents the current results (Sec. 3), detailing the frontend implementation and the backend 

implementation, as well as the challenges encountered thus far. Finally, the report concludes 

with the future project schedule (Sec. 4) and an overall summary (Sec. 5). 

2.  Methodology 

To support the application’s use cases (Sec 2.1), the application requires the implementation 

of a frontend (Sec. 2.2) and a backend (Sec. 2.3). Additionally, evaluations (Sec. 2.4) will be 

performed during development to guide the selection of LLMs and prompts used in the 

backend. The use cases, implementation strategies, the evaluation metrics and the source 



11 

 

control tools used in the project (Sec 2.5) are detailed below. 

2.1.  Use Cases 

2.1.1. Search Query 

The application’s main use case is handling user search queries. For example, as a user enters 

a query such as “current weather” in the frontend, the backend retrieves a list of URLs from 

traditional search engines with the user query, parse the content of each webpage, and generate 

a summary for each URL. A general summary consolidating all retrieved information is then 

generated. Finally, the general summary, the webpage URLs and the webpage summaries are 

presented to the user in the format of a traditional search engine. This use case has been 

implemented, with details provided in Section 3. 

2.1.2. Follow-Up Queries to LLM 

In addition to the primary use case, the application will allow users to ask follow-up queries 

based on the search results. For example, after searching for “the current weather,” the user 

will be able to ask a related question like “what should I wear?” directly under the general 

summary. The planned implementation is illustrated in Fig. 2.1: The frontend will capture the 

user’s query under the general summary and retrieves the compressed partial summaries of 

webpages stored in the user’s browser local storage during the initial search. These summaries, 

along with the query, will be sent to the backend via an HTTP request. The backend will then 

use LLMs to generate a relevant answer, which is then returned to the frontend as an HTTP 

response and displayed to the user. 

 

Fig. 2.1 Overview of the planned implementation of the follow-up query use case. 

2.1.3. Recursive Search 

When users provide vague or suboptimal search queries, traditional search engine APIs may 

return insufficient results. For example, a query like “most popular Linux distros info” might 

yield many articles listing Linux distributions without detailed information about the 

distributions themselves. To address this, the backend will be able to prompt the user to refine 
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their query or perform additional related searches when deemed necessary by LLMs. 

Additionally, the backend will use LLMs to automatically detect when the initial search results 

are inadequate. In such cases, the backend should generate refined search queries using LLMs, 

perform searches via the traditional search engine API, and feed the results back to the LLM 

for further processing. Finally, the user will be presented with an enhanced general summary, 

along with the search results of each recursive search, ensuring the search results to be 

comprehensive and relevant. 

2.2.  Frontend Implementation 

2.2.1. Framework 

This project will use Expo, built on React Native, to develop the frontend. Expo simplifies 

cross-platform development by allowing a single codebase for Android, iOS, and web 

applications, reducing development time. Unlike React Native, which natively supports only 

Android and iOS, Expo extends this capability to include web output, ensuring a unified 

experience across all platforms. Additionally, Expo projects include the Expo Router, which 

enables the implementation of navigation patterns such as tabs and stacks with a single 

definition of React Native component. 

2.2.2. Programming Language 

The frontend will be developed using TypeScript. It provides type safety, which helps prevent 

logic errors in codes. Additionally, TypeScript’s type definitions for components, objects and 

functions can enhance the readability and maintainability of the project’s code. 

2.2.3. UI and Mobile-First Design 

As of 2016, the majority of searches on Google are performed through mobile devices [10]. 

Furthermore, Google switched to prioritizing mobile versions of websites in indexing in 2020 

[11]. This demonstrates the importance of providing a great mobile searching experience 

alongside a web frontend when building a web searching platform. 

As most users are expected to be using mobile devices, the project will take a mobile-first 

approach to UI design. Responsive design, where the webpage layouts change with dimensions 

of the display [12], will be used to provide a seamless experience across devices with different 

sizes and aspect ratios. 
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2.3.  Backend Implementation 

2.3.1. Backend Framework and Technologies 

This project will implement its backend using managed cloud services. Compared to setting up 

local servers, this reduces the time required for maintenance and enhances the scalability of the 

service. It also reduces security concerns through ways such as providing DDoS protection.  

This project will use Amazon Web Services (AWS) as the cloud computing platform due to its 

leading market position. As illustrated in Fig. 2.2, Amazon holds 32% of the market as of Q2 

2024 [3], nearly matching the combined market share of all other providers outside the top 

three. The extensive adoption of AWS ensures a wealth of online documentation and support, 

while minimizing the risk of service discontinuation. 

 

Fig. 2.2 Market share of the largest cloud service providers measured in worldwide revenues 

in Q2 2024 [3]. The chart shows that Amazon holds a dominant position in the market. 

AWS Lambda will be used to host the backend. AWS Lambda primarily charges compute costs 

with little to no ongoing running costs [13]. This minimizes idle costs and is particularly well-

suited for this project, as the user base is expected to be initially small. As the user base grows, 

AWS Lambda’s ability to scale seamlessly ensures the backend services can continue to run 

without disruption.  

Amazon API Gateway will be used to create REST API endpoints for frontend communication. 

AWS Lambda provides libraries that allow access to API Gateway requests and responses. This 

allows the integration of the backend codes with the API endpoints, enhancing code readability. 

To streamline the development and deployment of the backend, this project will utilize the 

AWS Serverless Application Model (AWS SAM). AWS SAM is a framework that allows 

32%

23%12%

33%

Market Share of the Largest Cloud Providers Measured in 
Worldwide Revenues in Q2 2024

Amazon Microsoft Google Others
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developers to define cloud infrastructures, including AWS Lambda functions, APIs, and other 

resources, using a single YAML template file. Additionally, AWS SAM enables local testing of 

Lambda functions without deploying to the cloud, significantly speeding up the development 

cycle. 

2.3.2. Programming Language 

The backend will be developed using TypeScript. In addition to the advantages mentioned 

before, sharing the language in both the frontend and the backend enables the reuse of codes 

and type definitions, which helps to reduce development time. 

2.3.3. Backend System Architecture 

The project currently includes the following systems in the backend to support its main use 

case: 

1. Backend REST APIs 

REST APIs will be developed to facilitate communication between the frontend and the 

backend systems. The APIs are developed with AWS SAM and will be deployed with Amazon 

API Gateway. 

2. Web search and parsing system 

This system fetches relevant website links and extracts text content from the pages. While 

search engine APIs may provide snippets of search results, they often lack sufficient detail, 

especially for single-page applications where content may not load without JavaScript. To 

address this, an effective web parsing system is essential for retrieving the text data needed for 

LLM processing. Libraries like Puppeteer are used to dynamically load JavaScript content. 

Then, HTML parser such as Cheerio is used to parse the returned HTML and extract the 

relevant body text for further processing by the summary generation systems. 

3. Partial summary generation system 

Generating a general summary directly from the HTML contents of all search results would 

require an impractically large context length for the LLM. To optimize this, the system first 

generates a concise partial summary for each webpage, extracting key information. These 

partial summaries serve as inputs for both the individual webpage summaries and the general 

summary, enabling efficient and focused processing of search results while minimizing the 

context length required for the LLM. 
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4. Webpage summary generation system 

This system generates a summary for each webpage by querying the LLM with the parsed 

content obtained from the web search and parsing system. It leverages the partial summaries to 

produce concise and relevant webpage summaries. 

5. General summary generation system 

The system uses LLMs to generate a cohesive and concise general summary by consolidating 

the partial summaries of all search results. This delivers a chatbot-like experience to the user, 

providing clear, to-the-point answers to their search query.  

2.4.  Evaluation Metrics 

An essential aspect of the project is generating a general summary of the search results. To 

evaluate its accuracy, automatic evaluation tools will be used, reducing the need for human 

evaluators. Shen et al. [14] demonstrated that using LLMs to evaluate LLM-generated results 

outperforms other common automatic evaluation methods. Therefore, a head-to-head 

comparison approach, as described in [14], will be employed: both the application and an LLM 

will generate responses, and an LLM will rank the two to assess their quality. 

However, Shen et al. also found that LLMs may not align well with human evaluators when 

both compared summaries are of high quality. In addition, these methods cannot be directly 

used to evaluate the webpage summaries as well as the platform’s user experience. To address 

these issues, a user test will be conducted at the project’s conclusion to further evaluate the 

application’s effectiveness. Participants will be given a set of search queries and asked to rate 

the search results from the application, a search engine (e.g., Google), and an LLM-powered 

chatbot (e.g., GPT-4) on a scale from 1 (worst) to 5 (best) based on how quickly they retrieve 

relevant information. 

2.5.  Source Control 

Git is used as the source control tool. A public repository has been hosted on GitHub for this 

project (URL: https://github.com/hoverGecko/LLMSearch). 

3.  Results 

This section outlines the current outcomes of the project implementation of the use cases (Sec 

3.1), detailing the frontend implementation (Sec 3.2) and the backend implementation (Sec 3.3), 

along with the challenges encountered during the project (Sec 3.4). 

https://github.com/hoverGecko/LLMSearch
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3.1.  Use Cases 

The primary use case of the application, handling user search queries, has been implemented 

and tested locally, with deployment on AWS planned for the following week. Preliminary 

results demonstrate the application’s potential to be more effective and efficient in data retrieval 

compared to traditional search engines. For example, as shown in Fig. 3.1, when queried with 

“compare climate of Hong Kong with Singapore,” Bing returns filler texts that provide little 

meaningful information for each webpage. In contrast, the prototype generates a meaningful 

comparison of the climates between the two cities, both in the general summary and in the 

summaries of individual webpages. 

 

Fig. 3.1 Search results from the prototype (top, left) and Bing (right) with the query “compare 

climate of hong kong with singapore”. 

Additional use cases, such as handling follow-up user queries and recursive search, will be 

implemented in the future. 
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3.2.  Frontend Implementation 

A frontend prototype has been successfully developed using Expo, enabling deployment on 

both mobile and web platforms. The project used the React Native Paper library, which 

provides various React Native UI components including buttons, containers and search bars 

based on Material Design. Responsive design was implemented to ensure the interface adapts 

seamlessly to various devices, as illustrated in Fig. 3.2, where search results are displayed in 

common aspect ratios for desktops (16:9) and mobile phones (1:2).  

    

Fig. 3.2 Search results with query “diameter of earth” in the prototype in widescreen and in 

1:2 (Right). The first result’s description is replaced by an LLM summary. 

The prototype currently features a main page with a search bar (see Fig. 3.3) for user queries, 

presenting the general summary and the search results in a traditional format with URLs and 

a summary for each webpage, similar to conventional search engines. Future enhancements 

will include modification to facilitate other use cases, such as allowing the users to query the 

LLM after a search. 

 

Fig. 3.3 Front page of the application. 
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3.3.  Backend Implementation 

Among the backend systems outlined in the methodology, backend REST APIs have 

implemented with AWS SAM and tested locally to support the application’s primary use case, 

which is handling user search queries. Fig. 3.4 shows an overview of the implementation. First, 

the frontend captures a user’s search query, such as “current weather”, and sends it to the 

backend via an HTTP request.  

 

Fig. 3.4 Overview of the current implementation of the search query use case. 

The backend retrieves search results from a traditional search engine API, returning a list of 

URLs. It then processes each webpage associated with these URLs. Directly passing the 

fetched HTML content to LLMs for summary generation is unfeasible for two reasons: 

1. Some webpages, such as single-page applications, require JavaScript to dynamically 

load meaningful content. 

2. The large size of the combined HTML content of multiple webpages would likely 

exceed the context length limit of most LLMs and incur a high running cost. 

To address these challenges, the backend processes each URL as illustrated in Fig. 3.5: 

Puppeteer is used to handle JavaScript-dependent webpages by launching a headless 

Chromium browser and loading each webpage in a browser tab. Cheerio then parses the HTML 

plaintext returned by Puppeteer, removing unnecessary elements such as image tags and 

hyperlinks. Using this cleaned data, the backend uses DeepSeek-V3 to generate a partial 

summary for each webpage. These partial summaries are subsequently passed to DeepSeek-

V3 to create a short summary for each webpage and a general summary. 



19 

 

 

Fig. 3.5 Process of handling a single search result URL. 

Finally, the backend sends the general summary, along with the list of URLs and their 

corresponding webpage summaries, back to the frontend as the response to the request. The 

frontend then presents them to the user. 

3.4.  Evaluations 

No formal evaluations or user testing have been conducted at this time. They will be performed 

near the end of the project’s implementation. This will ensure that the evaluation is meaningful 

and reflective of the system's performance in delivering relevant and concise information to 

users. 

3.5.  Difficulties Encountered 

3.5.1. Use of LLM Service Provider 

Azure was initially chosen as the LLM service provider due to its access to OpenAI's models, 

particularly since OpenAI's APIs are unavailable in Hong Kong. However, during backend 

integration, it was discovered that Azure’s default rate limit was exceeded after processing the 

top three results twice within 10 seconds, which is insufficient for our scalability requirements. 

Additionally, Azure only provides access to older models like GPT-3.5 and GPT-4 by default, 

and upgrading to advanced models like GPT-4 or increasing rate limits requires additional 

approval from Microsoft.  

To address these limitations, alternative LLM service providers such as Hyperbolic (with a rate 

limit of 600 requests per minute) were tested. Currently, the project uses DeepSeek as the LLM 

service provider due to its lack of rate limits. However, Hyperbolic offers smaller models like 

Llama-3.2-3B for faster processing, taking less than 5 seconds to generate partial, general and 

webpage summaries for 3 webpages with the search query “diameter of earth”. On the other 

hand, DeepSeek primarily provides larger models such as DeepSeek-V3, which takes 19 

seconds to process the same 3 webpages. As development progresses, other LLMs and 

providers will continue to be evaluated to balance performance and efficiency. 
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3.5.2. Responsiveness of the Application 

Parsing and loading webpages with Puppeteer, combined with generating summaries using 

LLMs, can be time-consuming, with processing times reaching up to 30 seconds for all search 

results. The processing times can be further increased by slow responses from the parsed 

webpages. Currently, the backend handles user queries in a single HTTP request, forcing users 

to wait until all summaries are generated before seeing any results. This creates the impression 

of a slow or unresponsive service. To enhance the user experience, the single HTTP request 

will be split into multiple requests, allowing webpage summaries to be displayed as they are 

generated. Additionally, different methods to optimize the webpage parsing speed will be 

explored, such as attempting a simple HTTP request without Puppeteer first and only resorting 

to Puppeteer if there is JavaScript content that needs to be dynamically loaded. 

4.  Project Schedule 

Table 4.1 presents the proposed future project schedule. Additional use cases listed in Section 

2.1, such as allowing additional user queries and recursive searches, will be implemented. Near 

the end of the project, user testing and evaluations of the application’s effectiveness will be 

performed. 

Month Schedule 

2025-01 Deploying backend and frontend, UI refinements 

2025-02 Implementing user query system, recursive searches 

2025-03 Implementing recursive searches, user account system 

2025-04 User testing and evaluations 

Table 4.1 Proposed project schedule. 

5.  Conclusion 

This report presented the development of a cross-platform web search application designed to 

combine the strengths of traditional search engines and AI-powered chatbots while addressing 

their limitations. By retrieving search results through APIs, reordering them for relevance, and 

generating concise summaries, the project aims to improve the efficiency and reliability of the 

search experience. A functional prototype has been developed, which fetched results from the 

Bing Search API and leveraged DeepSeek-V3 to generate summaries for search results, 

demonstrating the potential for better clarity and relevance compared to traditional search 

engines. This advancement could be a step forward in enhancing the user experience in online 
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information retrieval by providing accurate information in a streamlined and concise format. 

Despite these promising results, the project encountered several challenges. First, limitations 

with the initial LLM service provider, Azure, such as restrictive rate limits and access to older 

models, necessitated a switch to DeepSeek, which lacks rate limits but relies on larger models 

that increase processing times. Additionally, the responsiveness of the application was 

impacted by the time-consuming nature of parsing webpages with Puppeteer and generating 

summaries with LLMs, with processing times reaching up to 30 seconds for all search results.  

Continuous evaluation of different LLMs and providers will be essential for identifying 

potential improvements in the application’s responsiveness and efficiency. Furthermore, 

planned features, such as enabling follow-up user queries and recursive searches, are yet to be 

implemented. These efforts are expected to enhance the overall effectiveness and user 

experience of the application, paving the way for a more intuitive and efficient search tool. 
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