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i. Abstract 

The rapid advancement of technology is transforming online information retrieval, particularly 

through the emergence of chatbots powered by large language models (LLMs) that challenge 

traditional search engines, which often produce less concise results and can be influenced by 

search engine optimization techniques. This report proposes an innovative cross-platform web 

search application that utilizes LLMs to enhance the quality of search results retrieved from 

search engine APIs. The project aims not only to generate concise summaries of search results 

retrieved from search engines but also to reorder them based on content relevance, while 

possibly mitigating the limitations associated with LLM-powered chatbots, including their 

knowledge cutoff dates and the hallucination problem where LLMs sometimes present false 

information as the truth to users. The LLMSearch platform, which utilizes the Bing Search API 

alongside LLMs, generates LLM-based summaries of search results. The implementation and 

the evaluations of LLMSearch demonstrate the proposed method’s potential to address user 

needs more effectively than traditional search engines and LLM-powered chatbots. This 

approach could pave the way for more reliable and user-centric information retrieval systems 

that can meet the evolving demands of users. 
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1.  Introduction 

The rapid evolution of technology is transforming how users seek information online. 

According to Gartner [4], AI-powered chatbots are expected to increasingly replace traditional 

search engines like Google in the coming years. These chatbots often utilize large language 

models (LLMs) such as ChatGPT and Claude, which are pre-trained language models that use 

the probability of word sequences in their training data to generate outputs [5]. Unlike 

conventional search engines that display a list of links, chatbots offer concise and direct 

answers to their queries, thus enhancing the efficiency of users’ search experience. 

While LLM-powered chatbots offer advantages in information retrieval, they also present 

significant challenges. One primary concern is that chatbots rely on LLMs, which typically 

have a knowledge cutoff date, rendering them unable to provide the most up-to-date 

information. For instance, in October 2024, the knowledge cutoff for GPT-4o-Mini was 

October 2023 [6]. This limitation can hinder users seeking current information, as illustrated 

in Fig. 1.1 where GPT-4o-Mini failed to provide information about the Prime Minister of the 

United Kingdom in 2024 due to the cutoff date. 

 

Fig. 1.1 Screenshot from Poe with GPT-4o-Mini [1], indicating it can't answer questions 

about current events beyond the knowledge cutoff. 

Moreover, while some chatbots like Perplexity leverage current web sources to mitigate the 

knowledge cutoff issue, all LLM-powered chatbots ultimately face a critical problem: 

hallucinations. Hallucinations occur when LLMs generate inaccurate or misleading 

information, which can mislead users. Research by Yao et al. [7] highlights the vulnerability of 

LLMs to adversarial attacks, achieving a success rate of 53.85% against LLaMA2-7B-chat. 

They further suggest that hallucinations may be an inherent flaw in LLMs, making their 

eradication a complex challenge.  

Additionally, the user interface (UI) of many chatbots, such as Poe, often lacks source 

attribution for the information provided and presents their answers as the absolute truth. Some 
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chatbots, like Perplexity, display sources alongside their answers but still predominantly 

portray their summaries as definitive by not providing any alternative result (see Fig. 1.2). This 

can lead users to accept chatbot responses without critical evaluation or verification of the 

information, which may be inaccurate or false due to the hallucination problem. 

  

Fig. 1.2 Screenshot from Perplexity [2] showing the query, presenting the current answer and 

sources, but doing so in a way that may suggest it as the sole truth. 

Conversely, traditional search engines like Google and Bing present results as a list of links 

and brief descriptions. They face ongoing challenges related to search engine optimization 

(SEO) tactics and spam content. A comprehensive review of major search engines conducted 

between 2022 and 2023 [8] revealed that top-ranking results often prioritize SEO strategies 

that may compromise content quality. In 2024, Google has implemented three spam updates 

and four core updates in an effort to enhance search quality in the same year [9]. However, 

findings [8] indicate that these updates only temporarily alleviate spam issues, leaving users 

with a subpar search experience between updates. 

Furthermore, traditional search engines can struggle with complex queries, often requiring 

users to sift through multiple results to find relevant information. For example, when querying 

“generate multiple HTML and CSS files in Vite,” GPT-4o mini provided detailed, tailored 

responses, while Google’s top results included links to forums like Stack Overflow, which may 

not address the users’ specific needs (see Fig. 1.3). 

Given the strengths and weaknesses of both chatbots and traditional search engines, this project 

aims to develop an innovative cross-platform web search application. The application retrieves 

search results from search engine APIs such as the Bing Web Search API.  
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Fig. 1.3 (Left) Prompt result from Poe with GPT-4o-Mini [1] with prompt “generate multiple 

html and css files in vite”. (Right) Search result from Google with a search query same as the 

GPT-4o-Mini prompt. 

The system then generates concise summaries for each individual result alongside a 

comprehensive overview of the search query. 

The deliverables for this project include: 

1. a responsive web application and a mobile application in the form of a .apk file that 

will serve as the primary interfaces for users,  

2. a backend system to support data storage and processing, and 

3. evaluations of the effectiveness of the application. 

The next section of this report outlines the methodology (Sec. 2) that will guide the project 

from conception to deployment. It covers design considerations and implementation strategies 

for both the frontend and backend, followed by the evaluation metrics. Subsequently, the report 

presents the current results (Sec. 3), detailing the frontend implementation, the backend 

implementation and the evaluations performed. Finally, the report concludes with a discussion 

of the challenges encountered during the project and the future work (Sec. 4), and finally an 

overall summary (Sec. 5). 

2.  Methodology 

To support the application’s use cases (Sec. 2.1), the application requires the implementation 

of a frontend (Sec. 2.2) and a backend (Sec. 2.3). Additionally, evaluations (Sec. 2.4) are 

performed to evaluate the effectiveness of the application. The use cases, implementation 

strategies, the evaluation metrics and the source control tool used in the project (Sec. 2.5) are 
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detailed below. 

2.1.  Use Cases 

2.1.1. Search Query 

The application’s main use case is handling user search queries. For example, as a user enters 

a query such as “current weather” in the frontend, the backend retrieves a list of URLs from 

traditional search engines with the user query, parses the content of each webpage, and 

generates a summary for each URL. A general summary consolidating all retrieved information 

is then generated. Finally, the general summary, the webpage URLs and the webpage 

summaries are presented to the user in the format of a traditional search engine. 

2.1.2. Follow-Up Queries to LLM 

In addition to the primary use case, the application allows users to ask follow-up queries based 

on the search results. For example, after searching for “the current weather,” the user can then 

ask a related question like “what should I wear?” directly under the general summary. The use 

case is illustrated in Fig. 2.1: The frontend captures the user’s query and retrieves the partial 

summaries of webpages during the initial search. These summaries, along with the query, are 

sent to the backend via an HTTP request. The backend then uses LLMs to generate a relevant 

answer, which is then returned to the frontend as an HTTP response and displayed to the user. 

 

Fig. 2.1 Overview of the implementation of the follow-up query use case. 

2.1.3. Recursive Search 

When users provide vague or suboptimal search queries, traditional search engine APIs may 

return insufficient results. For example, a query like “most popular Linux distros info” might 

yield many articles listing Linux distributions without detailed information about the 

distributions themselves. To address this, the backend generates multiple related search 

prompts for the user, performs searches with both the generated and the original search prompts, 

and ranks the search results using LLMs. In addition, the initial searches and summary 

generation may not be sufficient to answer the user’s follow-up query. In this case, the 
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application generates suggestions of new search queries, which are presented to the user in the 

frontend. Finally, the user is presented with an enhanced general summary, ensuring that the 

search results are comprehensive and relevant. 

2.1.4. User Authentication 

The system supports user account creation and authentication. This enables the implementation 

of additional features such as search history and a payment system in the future. 

2.2.  Frontend Implementation 

2.2.1. Framework 

This project will use Expo, built on React Native, to develop the frontend. Expo simplifies 

cross-platform development by allowing a single codebase for Android, iOS, and web 

applications, reducing development time. Unlike React Native, which natively supports only 

Android and iOS, Expo extends this capability to include web output, ensuring a unified 

experience across all platforms. Additionally, Expo projects include the Expo Router, which 

enables the implementation of navigation patterns such as tabs and stacks with a single 

definition of a React Native component. 

2.2.2. Programming Language 

The frontend will be developed using TypeScript. Compared to JavaScript, TypeScript provides 

type safety, which helps prevent logic errors in code. Additionally, TypeScript’s type definitions 

for components, objects and functions can enhance the readability and maintainability of the 

project’s code.  

2.2.3. UI and Mobile-First Design 

As of 2016, the majority of searches on Google are performed through mobile devices [10]. 

Furthermore, Google switched to prioritizing mobile versions of websites in indexing in 2020 

[11]. This demonstrates the importance of providing a great mobile search experience alongside 

a web frontend when building a web search platform. 

As most users are expected to be using mobile devices, the project will take a mobile-first 

approach to UI design. Responsive design, where the webpage layouts change with dimensions 

of the display [12], will be used to provide a seamless experience across devices with different 

sizes and aspect ratios. 
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2.2.4. Website Hosting 

Cloudflare Pages is used to host the frontend of the application. It supports integration with Git 

repositories to create a continuous integration/continuous deployment (CI/CD) pipeline where 

the new version of the webpage is built and redeployed with each change in the repository. 

Moreover, websites hosted on Cloudflare Pages can benefit from Cloudflare’s large global 

network, ensuring the wide availability of the application [13].                                                                                                        

2.3.  Backend Implementation 

2.3.1. Backend Framework and Technologies 

This project will implement its backend using managed cloud services. Compared to setting up 

local servers, this reduces the time required for maintenance and enhances the scalability of the 

service. It also reduces security concerns through ways such as providing DDoS protection.  

This project will use Amazon Web Services (AWS) as the cloud computing platform due to its 

leading market position. As illustrated in Fig. 2.2, Amazon holds 32% of the market as of Q2 

2024 [3], nearly matching the combined market share of all other providers outside the top 

three. The extensive adoption of AWS ensures a wealth of online documentation and support, 

while minimizing the risk of service discontinuation. 

 

Fig. 2.2 Market share of the largest cloud service providers measured in worldwide revenues 

in Q2 2024 [3]. The chart shows that Amazon holds a dominant position in the market. 

AWS Lambda will be used to host the backend. AWS Lambda primarily charges compute costs 

with little to no ongoing running costs [14]. This minimizes idle costs and is particularly well-

suited for this project, as the user base is expected to be initially small. As the user base grows, 

AWS Lambda’s ability to scale seamlessly ensures the backend services can continue to run 

32%

23%12%

33%

Market Share of the Largest Cloud Providers Measured in 
Worldwide Revenues in Q2 2024

Amazon Microsoft Google Others
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without disruption.  

Amazon API Gateway will be used to create REST API endpoints for frontend communication. 

AWS Lambda provides libraries that allow access to API Gateway requests and responses. This 

allows the integration of the backend code with the API endpoints, enhancing code readability. 

To streamline the development and deployment of the backend, this project will utilize the 

AWS Serverless Application Model (AWS SAM). AWS SAM is a framework that allows 

developers to define cloud infrastructures, including AWS Lambda functions, APIs, and other 

resources, using a single YAML template file. Additionally, AWS SAM enables local testing of 

Lambda functions without deploying to the cloud, significantly speeding up the development 

cycle. 

2.3.2. Database 

DynamoDB was selected as the application's database. As a managed service in AWS, not only 

does DynamoDB allow for easy table definition within AWS SAM template files, it also 

removes the need for database administration and maintenance, saving development time. 

DynamoDB is a NoSQL database, which does not require a rigid schema definition typical of 

relational databases such as MySQL. This flexibility highly suits the changing requirements 

and needs of the project during development. 

2.3.3. Programming Language 

The backend will be developed using TypeScript. In addition to the advantages mentioned 

before, sharing the language in both the frontend and the backend enables the reuse of code 

and type definitions, which helps to reduce development time. 

2.3.4. Backend System Architecture 

The project currently includes the following systems in the backend to support its main use 

case: 

1. Backend REST APIs 

REST APIs will be developed to facilitate communication between the frontend and the 

backend systems. The APIs are developed with AWS SAM and will be deployed with Amazon 

API Gateway. 

2. Web search system 

This system fetches relevant website links from the Bing Search API. User queries may 
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sometimes be too narrow, too vague or too long. This can cause the search results to be 

insufficient for summary generation. Therefore, LLMs are used to generate additional queries 

related to the initial user search query. Then, web searches are performed with all the search 

queries and their results are ranked by LLMs according to their relevance. 

3. Web parsing and partial summary generation system 

The system takes a URL, parses the content of a webpage and returns the partial summary of 

the URL. While search engine APIs may provide snippets of search results, they often lack 

sufficient detail, especially for single-page applications where content may not load without 

JavaScript. To address this, an effective web parsing system is essential for retrieving the text 

data needed for LLM processing.  

Loading the pages with Puppeteer solves this issue as it uses Chromium to load JavaScript 

content. However, the process of starting Chromium and loading a webpage with it is slower 

than fetching the webpage content with an HTTP request. A hybrid approach is employed to 

reduce the response time of the system. First, the system attempts to fetch the webpage content 

with a simple HTTP GET request. Heuristics are then used to determine if the webpage content 

requires script loading to be properly fetched. In the case where script loading is required, 

libraries like Puppeteer are used to dynamically load JavaScript content. Then, an HTML parser 

such as Cheerio is used to parse the returned HTML and extract the relevant body text for 

further processing by the summary generation systems. 

 

Fig. 2.3 Process of handling a single search result URL with Puppeteer. 

Generating a general summary directly from the HTML contents of all search results may 

require an impractically large context length for the LLM. To optimize this, the system first 

generates a concise partial summary for each webpage, extracting key information. These 

partial summaries serve as inputs for both the individual webpage summaries and the general 

summary, enabling efficient and focused processing of search results while minimizing the 

context length required for the LLM. 
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4. Webpage summary generation system 

This system generates a summary for each webpage by querying the LLM with the parsed 

content obtained from the web search and parsing system. It leverages the partial summaries to 

produce concise and relevant webpage summaries. 

5. General summary generation system 

The system uses LLMs to generate a cohesive and concise general summary by consolidating 

the partial summaries of all search results. This delivers a chatbot-like experience to the user, 

providing clear, to-the-point answers to their search query.  

6. Chat system 

The system uses LLMs to respond to user’s follow-up questions to the general summary. This 

enables a chatbot-like experience and saves the user from having to perform another search 

query for questions that can be answered with the search results.  

7. User Authentication System 

The system handles user signup and login by querying the database. It also provides 

authorization tokens to be used by the frontend for user verification during API calls. 

2.3.5. User Authentication and Security 

The backend supports user account creation by storing new user account details in DynamoDB. 

User details include user email, the hashed password and the account creation date. 

Storing User Passwords 

Storing user passwords in plaintext presents a security risk in instances of data leaks [15]. For 

secure storage, the user password should be hashed before being stored. Hashed passwords can 

be attacked with brute force, where the attacker simply takes the set of possible passwords, 

hashes each of them and compares the hashed values with the leaked password hash [16]. A 

precomputed hash table that contains the hashes of the most common passwords can also be 

used in an attack [16]. An example of such attacks occurred in June 2012, where nearly 6 

million LinkedIn account passwords were leaked and over 76% of them were cracked under 

2.5 hours since they used unsalted SHA-1 hashes to store passwords [17]. 

Two ways can be used to prevent them. First, a computationally expensive hash algorithm can 

be used such that attacks are less efficient [16]. Second, a randomly-generated salt is stored 

and combined with the original password before hashing to create the password hash, which 
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prevents attacks based on precomputed hash values including a lookup table attack [16].  

Taking these considerations into account, the user authentication system uses the Bcrypt 

function. An example of a Bcrypt hash is: 

$2a$10$rQMo98VDnxYp4qs4z0C4yuBe.7m66jomzTdSKg8LE8vLpSsyWggly 

which corresponds to [18]: 

• $2a: the version 2a, 

• $10: the cost factor, 

• $rQMo98VDnxYp4qs4z0C4yuBe: a salt generated by Bcrypt, 

• 7m66jomzTdSKg8LE8vLpSsyWggly: the hash. 

Bcrypt automatically generates a salt to prevent against lookup table attacks. Compared to 

another hash algorithm PBKDF2, Bcrypt is computationally expensive and expensive in 

memory as well, and therefore better protects against brute force attacks [18].  

2.3.6. Choice of LLM Service Provider 

The backend currently interfaces with Large Language Models (LLMs) through OpenRouter, 

chosen for its extensive model support. Gemini Flash 2.0 is used as the default model as it 

provides a good balance between cost and performance. GPT-4o-mini is used as the backup 

model. 

Recognizing the rapid advancements in LLM capabilities and cost-efficiency, and that different 

application functions may benefit from different model types (high-capability models for 

complex tasks versus faster, cheaper models for simpler ones), the system architecture 

prioritizes flexibility in LLM integration. This is achieved through dependency injection. An 

abstract class, LLMPromptCompletor, defines the contract for LLM interaction. Functions that 

require text generation or completion receive a concrete instance implementing this interface. 

These implementations utilize the OpenAI npm package, which provides a client adhering to 

the OpenAI API specification supported by LLM providers, including OpenRouter, Perplexity, 

DeepSeek, and Google. 

This design allows the underlying LLM provider or specific model to be changed with minimal 

code modification. Adapting to a new compatible provider typically only requires creating a 

new implementation class configured with the provider's specific base URL and API key, 

simplifying future updates and experimentation. 
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2.4.  Evaluations 

An essential aspect of the project is generating a general summary of the search results. To 

evaluate its accuracy, automatic evaluation tools will be used, reducing the need for extensive 

human evaluation. Shen et al. [19] demonstrated that although not perfectly replicating human 

judgment, using LLMs to evaluate LLM-generated results can outperform other common 

automatic evaluation methods in correlating with human preferences. An example of this 

approach is the LLM-judged version of MT-Bench created by Zheng et al. [20], a benchmark 

with 80 multi-turn questions of multiple categories such as writing, coding and reasoning. The 

researchers evaluate the multi-turn chatting capabilities of LLMs by scoring the LLM-

completed questions. With MT-Bench, the GPT-4 generated scores and human evaluations 

reach an over 80% agreement rate, demonstrating the potential of using LLMs as judges of 

LLM-generated contents. 

However, the MT-Bench questions and the judging prompts cannot be directly used to evaluate 

the performance of this project's general summary because the application's chatting function 

is designed to prevent answering queries outside of the searched content to minimize 

hallucinations, meaning the application might not respond to additional queries in the same 

way most LLMs evaluated by MT-Bench would. 

Therefore, to evaluate the application’s performance, an evaluation framework inspired by MT-

Bench will be used. DeepSeek-V3 will serve as the judge, and different categories of search 

queries including short queries, complex queries and news-related queries will be used to 

thoroughly test the capabilities of the application. For each query, the application and the 

compared baseline LLMs will be prompted to generate a summary. For the baseline LLMs, a 

custom prompt will be used to instruct them on the summarization task. Then, the generated 

summaries are scored by an LLM judge from 1-10. The application’s performance is then 

compared to other LLMs.  

Another benchmark, MT-Bench-101, used multiple dimensions such as reasoning and 

rephrasing capabilities to rate the capabilities of LLMs [21]. Different tasks and different 

judging prompts are created specifically for different dimensions. Inspired by this multi-

dimensional approach, the judging LLM will be prompted to consider the following dimensions: 

• Relevance: How well does the summary address the user’s query? 

• Conciseness: Is the answer clear and concise? Can the user quickly find relevant 
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information from the summary? 

• Completeness: Does the summary provide a sufficient overview to the search query’s 

topic? 

For each search query, the LLM judge is instructed by three separate prompts to give a 1-10 

rating to the search result and give an explanation for the rating for each dimension. 

2.5.  Source Control 

Git is used as the source control tool. Since Git is widely adopted, it can be readily integrated 

with existing platforms and their CI/CD pipelines such as Cloudflare Pages used in this project, 

thus streamlining the application’s development and deployment workflow. 

The repository is hosted on GitHub (https://github.com/hoverGecko/LLMSearch). 

3.  Results 

This section outlines the current outcomes of the project implementation of the use cases (Sec. 

3.1), detailing the frontend implementation (Sec. 3.2) and the backend implementation (Sec. 

3.3), along with the evaluations of the effectiveness of the application (Sec. 3.4). 

3.1.  Use Cases 

The use cases of the application, including handling search query, handling follow-up queries, 

and recursive searches have been implemented.  

Search results from the application demonstrate its potential to be more effective and efficient 

in data retrieval compared to traditional search engines. For example, as shown in Fig. 3.1, 

when queried with “compare climate of Hong Kong with Singapore,” Bing returns filler texts 

that provide little meaningful information for each webpage. In contrast, the application 

generates a meaningful comparison of the climates between the two cities. 

https://github.com/hoverGecko/LLMSearch
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Fig. 3.1 General summary from the application (left) and search results from Bing (right) 

with the query “compare climate of hong kong with singapore”. 

In addition, the user can ask follow-up queries, as shown in Fig. 3.2. If related information is 

found in the generated summaries of the webpages, the user receives an answer directly. In the 

recursive search use case, the generated summaries of the webpages are deemed insufficient to 

answer the user’s query. The application is able to provide search query suggestions to the user. 

 

Fig. 3.2 User asking follow-up questions, demonstrating the follow-up query use case and the 

recursive search use case. 

In an early prototype, web search and all summaries are processed and sent to the frontend in 

a single HTTP request. Fig. 3.3 shows an overview of its implementation. First, the frontend 

captures a user’s search query, such as “current weather”, and sends it to the backend via an 

HTTP request. The backend retrieves search results from a traditional search engine API, 

returning a list of URLs. It then loads the text content of all the top search results with Puppeteer 
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and generates their partial summaries, their webpage summaries and the general summary. 

Finally, the backend sends the search result, the general summary and the webpage summaries 

in a single HTTP response. 

 

 

Fig. 3.3 Overview of the previous implementation of the search query use case. 

However, since the general summary must be generated after both the web search and the 

partial summarization of webpages have completed, this approach results in a long response 

time before the first and only response sent from the backend. 

To address this issue, the endpoint supporting the search use case has been split into multiple 

endpoints: /search, /process-url, /generate-webpage-summary and /generate-general-summary. 

Now, the frontend presents the results as soon as the split endpoint responds to the frontend’s 

request, improving the responsiveness of the application. In addition, endpoints /login, /signup 

and /status have been added to support the authentication use case, and /chat has been added to 

support the follow-up query use case. 

Fig. 3.4 shows the sequence diagram of the current implementation of the search, the follow-

up query and the recursive search use cases, while Fig. 3.5 shows the sequence diagram of the 

authentication use case showing the process of user account creation, logging in, checking login 

status and signing out. The implementation details of each component can be found in Sec. 3.2 

and 3.3. 
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Fig. 3.4 Sequence diagram of the search, follow-up query and recursive search use cases. 
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Fig. 3.5 Sequence diagram of the user authentication use case. 
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3.2.  Frontend Implementation 

3.2.1. Overview 

The frontend has been successfully developed using Expo, enabling deployment on both 

mobile and web platforms. The React Native Paper library, which provides various React 

Native UI components including buttons, containers and search bars based on Material Design, 

is used in various frontend components. Responsive design was implemented to ensure the 

interface adapts seamlessly to various devices, as illustrated in Fig. 3.6, where search results 

are displayed in common aspect ratios for desktops (16:9) and mobile phones (1:2).  

    

Fig. 3.6 Search results with query “diameter of earth” in the application. in widescreen (left) 

and in 1:2 (right). 

The index page of the application features a search bar (see Fig. 3.7) for user queries. After 

entering a query, the user enters the search page with the search query, which contains partial 

summaries for webpages and a general summary for the search results with a text input field 

for asking follow-up questions (see Fig 3.2 and Fig. 3.6). 

  

Fig. 3.7 Login page (left) and the index page (right) of the application. 
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3.2.2. Webpage Hosting 

The frontend has been successfully hosted on Cloudflare Pages with the URL https://llm-

search.pages.dev/. A CI/CD pipeline with a GitHub repository has been set up. Whenever there 

is a file change in the frontend directory in the deployment branch, Cloudflare Pages rebuilds 

the webpage using the latest in the directory. This removes the need to manually upload files 

or trigger a website deployment after updates, saving valuable development time.  

3.2.3. Frontend Pages and React Native Components 

This section describes the pages in the application. Other than special components with 

filenames that start with the underscore or the plus sign, the name of the component file is the 

path of the page. For example, login.tsx corresponds to the /login page. The layout of the 

application is described in a component named _layout.tsx.  

App Layout (_layout.tsx) 

In Expo, page and screen routing is handled by Expo Router. 

In Expo Router, the page components are located in the /app directory. The page layout of the 

app is described in the AuthLayout component in the _layout.tsx file, which is wrapped by the 

AuthContext context provider to provide authentication-related functions to all page 

components. 

The AuthLayout component redirects the user to the login page if it is detected that the user 

has not logged in or the user's authorization token has already expired. 

Main Page (/) 

The main page is the first page that the user enters if the user has logged in. It includes the title 

of the application and a search bar. It also includes a button that when clicked directs the user 

to the settings page. 

 

Fig 3.8 The main page. 

https://llm-search.pages.dev/
https://llm-search.pages.dev/
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Search Bar Component (SearchBar.tsx) 

The search bar component directs the user to the search path (/search?q=<user query>) after 

the user has entered the search query and pressed the search button or the enter key. If it is 

empty, it sends the user to the main page instead. 

 

Fig 3.9 The search bar component. 

Search Page (/search) 

After entering the search prompt in the search bar in the main page or the search page, the user 

enters the search page with the entered search query. 

Using the useEffect hook, the search page component gets the user search query and first 

fetches the initial search result from the backend.  

For performance, only the top 5 results are processed by LLM. A snippet from the Bing search 

result is displayed for other search results. Users can manually click the Generate Summary 

button to create the partial summary and the webpage summary. 

 

Fig 3.10 The search page with search query “tiger”. 

Search Result Component (SearchResultItem.tsx) 

The component handles the display of the webpage and partial summary of each search result. 

The component collects the top search results and calls the /process-url endpoint with the 

search query and the URL of each of the top 5 results. The endpoint returns a partial summary 

of each webpage. 
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When the partial summary of a webpage returns, the frontend calls the /generate-webpage-

summary with the search query and the partial summary of the webpage. The endpoint returns 

a shorter, 5-sentence summary, which is displayed on the search result. The user can click the 

"Show More" button to see the longer partial summary. 

 

Fig 3.11 Search result components with webpage summary (left) and Bing search snippet 

(right). 

General Summary and Chat Component (GeneralSummaryChat.tsx) 

Meanwhile, once the 5 partial summaries are collected (or have returned with error), the 

frontend calls the /generate-general-summary with the partial summaries, which returns a 

general summary relevant to the user query.  

The endpoint is called by the GeneralSummaryChat component. The component handles the 

logic and display of the general summary generation and chatting. It takes the user search query, 

the initial Bing search results and the detailed search results from /process-url. Then, on each 

search query change, the component calls the /generate-general-summary endpoint with the 

search query and the partial summaries to fetch the general summary. The general summary is 

then displayed to the user. 

After the general summary returns, the user can send follow-up questions. The frontend takes 

the previous prompts, summaries, user query and the chat history and calls the /chat endpoint 

with the general summary and the partial summaries of the top search results, and the backend 

attempts to answer the query with the information. If it was determined to be beyond the scope 

of the webpages, the backend returns with additional search query suggestions, which the user 

can click on to go to the search page with the search query (/search?q=…). 

More details of each endpoint are in the Backend Endpoints and Handlers section. 
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Fig 3.12 The general summary and chat component. 

Settings Page (/settings) 

The settings page displays the user email account and includes a sign out button. When the user 

clicks the sign out button, the authorization token is cleared from storage in the frontend and 

the user is redirected to the login page, effectively signing the user out of the application. 

With a possible payment system in the future, the user will be able to add balance to their 

account, change their password and their personal account details here. 

Login Page (/login) and Signup Page (/signup) 

The login page includes 2 text input fields for the registered user’s account email and password. 

It also contains a login button and a signup button that directs new users to the signup page.  

When the login button is pressed, the email and the password are sent to the backend /login 

endpoint. If the login is successful, the backend sends a JSON web token (JWT) as the 

authorization token which can be 30-day long back to the frontend. If an error is encountered, 

such as if the password is wrong or a server error is encountered, an error message is displayed 

in red text above the email text input field. 

The signup page has a similar layout to the login page except it includes a table of password 

requirements and a back button in the top right corner that brings the user back to the login 

page. 
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Fig 3.13 The settings page (left), the login page (middle) and the signup page (right). 

Authentication Context (AuthContext.tsx) 

User Authentication is handled by AuthContext.tsx. This approach enables easy handling of 

user authentication in different pages by allowing the use of different functions and variables 

related to authentication. The context is provided by the AuthProvider component. Since all 

components are wrapped by the AuthProvider in the RootLayout component, all components 

can use the context by calling the useAuth hook. The useAuth hook returns an object with the 

following properties: 

• checkAuthStatus: Calls /status in the backend to check if the user token is valid. If the 

token is valid, set the states of useAuth (such as token, user and isAuthenticated) to the 

corresponding values. 

• token: The authorization bearer token. The token is sent to the backend API as the 

authorization token. 

• user: The user information retrieved from the backend. Currently, this contains the user 

email. 

• isAuthenticated: A Boolean value that is true only if checkAuthStatus succeeded. 

• isLoading: A Boolean value that indicates the result of any of the authentication 

functions (login, signup and logout) is pending. 

• login: A function that takes the user email and plaintext password as arguments. It tries 

to login the user by calling the /login endpoint with the email and the password. If the 

login is successful, the returned authorization token is stored in the secure storage 

provided by Expo. However, the Expo secure storage package is not supported on web. 

Therefore, the AsyncStorage package is used on web to store the token instead. 

• signup: A function that takes the user email and plaintext password as arguments. It 
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tries to call the /signup endpoint with the user email and password to create a user 

account. If the signup is successful, it then tries to log in the user. 

• logout: A function that takes no argument. It removes the authorization token stored in 

device or browser storage, effectively logging the user out. 

• authFetch: A function that fetches the backend endpoints with the authorization header. 

3.2.4. Mobile Application 

The application has been tested successfully on Android using Android Emulator. Minimal 

changes had to be made other than using the react-native-svg-transformer and react-native-svg 

packages to enable using .svg icons on Android, and some Android-specific CSS rule changes. 

An .apk file has been exported using the build function of the Expo Application Services (EAS). 

With the .apk file, users can install the application on various Android devices.  

 

Fig. 3.14 Screenshots of the application running on Android using Android Emulator. 

3.3.  Backend Implementation 

3.3.1. Overview 

The backend systems have been implemented with REST APIs and database deployed on AWS 

using AWS SAM to support the application’s use cases.  

The API endpoint is https://irmzlm06ok.execute-api.ap-southeast-1.amazonaws.com. 

3.3.2. Core Functionality Endpoints 

All endpoints associated with the application's main features require user authentication. Upon 
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receiving a request, the backend first validates the Authorization header, expecting a JWT 

bearer token. If the header is missing or the token is invalid or expired, the server immediately 

responds with an HTTP 401 (Unauthorized) status code. 

Search endpoint 

• Endpoint path: /search 

• Method: GET 

• Input: Search query (/search?q=...) 

• Output: LLM-reordered Bing search results 

The backend first use LLMs to refine the search query. Three related but different search 

queries are generated to broaden the scope of the search. Then, the search results from the four 

search queries are combined. The search results include the URL and a very short summary of 

the webpage called a snippet. The combined search results are ranked by LLM according to 

the URL and the Bing search result snippet. The reordered search results are then returned to 

the frontend. 

URL parsing and partial summary generation endpoint 

• Endpoint path: /process-url 

• Method: POST 

• Input: The user search query and the URL to be processed 

• Output: The partial summary 

The backend first attempts to perform a fast fetch, where a simple HTTP GET request is sent 

to the website. It then checks the returned response with a set of heuristics to determine if 

loading with Puppeteer and Chromium is required. The heuristics include checking if the length 

of the raw HTML is too short for meaningful information (currently set to length less than 150 

characters), or if it contains text such as “enable javascript”, and “<noscript>”. Since the 

intention is to shorten the response time, LLMs cannot be used. If determined to be necessary, 

a heavy fetch with Puppeteer and Chromium is performed. The result from the fast fetch or the 

heavy fetch then has its content extracted using Cheerio.  

The extracted text is sent to the LLM to be summarized as the partial summary. The LLM is 

instructed to keep all the key information in the webpage to handle later follow-up queries from 

the user. The summarized content is finally returned to the frontend. 
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Webpage summary generation endpoint 

• Endpoint path: /generate-webpage-summary 

• Method: POST 

• Input: The user search query and the partial summary 

• Output: The short webpage summary 

The endpoint receives the user query and the partial summary of a webpage from the frontend. 

It prompts the LLM to attempt to answer the user’s query based on the partial summary, and 

returns the generated short webpage summary to the frontend. 

General summary generation endpoint 

• Endpoint path: /generate-general-summary 

• Method: POST 

• Input: The user search query and the top search results’ partial summaries 

• Output: The general summary and the chat prompt in the OpenAI API format 

The endpoint receives the user query and the top search results’ partial summaries from the 

frontend. It then prompts the LLM to answer the user query strictly based on the information 

from the partial summaries of webpages, and returns the general summary to the frontend. 

Aside from the general summary, the response also contains the full chat prompt including the 

partial summaries in the OpenAI API chat history format. This is later passed by the frontend 

to the chat endpoint to give the LLM the full context of the web search. 

Chat endpoint 

• Endpoint path: /chat 

• Method: POST 

• Input: The chat history in OpenAI API format and the new user query 

• Output: The updated chat history with the LLM’s answer and an array of suggested new 

search queries 

The chat endpoint receives the full list of LLM chat history including the partial summaries of 

webpages from the frontend. It then instructs the LLM to answer the user’s query based on the 

chat history and suggest new search queries. The returned result is then appended to the chat 

history and returned to the frontend. If the LLM suggests new search queries, they are also 

returned to the frontend in a separate variable. 
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3.3.3. Authentication Endpoints 

These endpoints support the authentication system of the application, which includes user 

signup, login and checking the user token’s status.  

Signup endpoint 

• Endpoint path: /signup 

• Lambda Handler: authHandler.ts/signupHandler 

• Method: POST 

• Input: JSON containing user email and user password 

• Successful output: A message confirming successful user creation. 

The signup handler first validates the user-provided password against the defined security 

policy: a minimum length of 8 characters, containing at least one lowercase letter, one 

uppercase letter, and one numeric digit. To prevent race conditions during concurrent account 

creation attempts for the same email address, a condition expression 

‘attribute_not_exists(email)’ is used in the PutItem operation. This ensures atomicity by only 

allowing the creation if the email is not already present, leveraging strong consistency for this 

specific conditional write [22]. If both the password policy and uniqueness checks are satisfied, 

the handler generates a Bcrypt hash of the password (including a unique salt) and stores the 

new user record in the DynamoDB table. 

Login endpoint 

• Endpoint path: /login 

• Lambda Handler: authHandler.ts/loginHandler 

• Method: POST 

• Input: JSON containing user email and user password 

• Output: JSON Web Token (JWT) with a 30-day expiry date 

The login handler retrieves the user record associated with the provided email from the 

DynamoDB table. It then utilizes the Bcrypt library's comparison function to securely verify 

the provided password against the stored hash. By default, DynamoDB performs eventually 

consistent reads [23]. To mitigate potential security risks associated with stale data (e.g., an 

attacker using recently changed credentials before the update propagates), the GetItem 

operation is configured with the 'ConsistentRead=true' parameter. This guarantees that the read 

reflects all prior successful writes, albeit at double the read capacity unit cost [22]. If the 
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password verification is successful, a JWT is generated. This token is signed using a server-

side secret key and includes claims such as the user email and an expiration time set to 30 days 

in the future. The JWT is returned to the client to be stored, and subsequent inclusion as a 

Bearer token in the Authorization header for requests to protected endpoints. 

User information endpoint 

• Endpoint path: /status 

• Lambda Handler: authHandler.ts/statusHandler 

• Method: GET 

• Input: None (Requires Authorization header, which contains a JWT) 

• Output: User information, currently the user’s email 

This endpoint validates the JWT provided in the Authorization header of the request. The 

handler verifies the token's signature using the stored server secret and checks its expiry claim. 

If the token is deemed valid, the payload (containing the user's email) is decoded, and the email 

is returned in the response body. This allows the frontend application to verify the current 

session status and retrieve the user's email without re-authentication. 

3.4.  Evaluations 

3.4.1. Implementation 

An automated evaluation was performed using a TypeScript script to generate summaries from 

both the application and other baseline LLMs. The script emulates the frontend workflow for 

obtaining the application's general summary. This involved obtaining an authorization token 

via the /login endpoint, retrieving search results using the /search endpoint, generating partial 

summaries for top results with the /process-url endpoint, and finally, producing the general 

summary via the /generate-general-summary endpoint. 

For the baseline LLMs, they were instructed to act as an AI search assistant in April 2025 and 

generate a summary based on the provided search query. They were further instructed not to 

create unfounded information, and, similar to the application's general summary, to limit their 

output length to three paragraphs. 

Three distinct categories of search prompts were utilized, with nine unique prompts per 

category: 

• “keywords”: Prompts consisting of simple keywords  
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o Examples: “tiger”, “artificial intelligence applications” 

• “complexSentence”: Prompts phrased as complete questions or complex statements 

o Examples: “Which of the following is heavier in general, a tiger or a lion?”, 

“Explain the main differences between nuclear fission and nuclear fusion.” 

• “news”: Prompts focused on recent events or time-sensitive information 

o Examples: “5060ti price”, “latest fed rate” 

DeepSeek-V3 served as the LLM judge. It was guided by three separate prompts to evaluate 

the generated summaries based on completeness, conciseness, and relevance. The scoring 

guidelines drew inspiration from MT-Bench-101 [21], providing explicit scoring guidelines for 

different score ranges, including the maximum score of 10 (see Fig. 3.15). 

 

Fig. 3.15 The scoring guidelines for the completeness of the summary. 

Three baseline LLMs were evaluated alongside the application (LLMSearch):  

1. google/gemini-2.0-flash-001 (Gemini) 

2. openai/gpt-4o-2024-05-13 (GPT-4o) 

3. meta-llama/llama-4-maverick (Llama4) 

All were accessed via OpenRouter's OpenAI-compatible API endpoint. These baseline LLMs 

lack web-searching capabilities. 

3.4.2. Results 

The average scores for each category are presented in Fig. 3.19. Evaluation results will be 

uploaded to the project’s repository. 

Relevance and Completeness in Keywords and Complex Sentence Categories (Fig. 3.16) 

Both the application and the baseline models generally achieved high scores (above 7) for 

relevance and completeness on keyword and complex sentence queries, with Gemini being a 

notable exception in the keywords category. Further analysis revealed that Gemini often 

responded by requesting clarification (e.g., asking for specific mission details for the prompt 

“space exploration missions”, resulting in a completeness score of 1) or by stating its inability 

to access current information related to the keywords (e.g., stating it lacked data on climate 

change effects specifically in April 2025 for the prompt “climate change effects”, also scoring 
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1 in completeness). These factors contributed to its lower average score in this category. 

 

Fig. 3.16 Average relevance and completeness scores of the application (LLMSearch) and 

different LLMs in the keyword and complex sentence categories. 

Relevance and Completeness in News Category (Fig. 3.17) 

The application demonstrated significantly higher performance in both relevance and 

completeness for news-related prompts compared to Gemini and Llama4. This outcome was 

anticipated, given the application's ability to fetch the latest information via web searches. For 

instance, it correctly provided the latest US Federal Funds rate (prompt: "latest fed rate") and 

the accurate pricing for the Nvidia RTX 5060 Ti (“The RTX 5060 Ti is priced at $429 for the 

16GB model and $379 for the 8GB model”, consistent with Nvidia’s announcement [24]). In 

contrast, Gemini replied that information on the graphics card was unavailable, while Llama4 

incorrectly claimed the card was not a real model. 
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LLMSearch/keywords

LLMSearch/complexSentences

Gemini/keywords

Gemini/complexSentences

GPT-4o/keywords

GPT-4o/complexSentences
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Llama4/complexSentences

Average Relevance and Completeness Scores in Keyword and 
Complex Sentence Categories

Completeness Relevance
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Fig. 3.17. Average relevance and completeness scores of the application (LLMSearch) and 

different LLMs in the news category, also showing the manually adjusted average scores of 

GPT-4o. 

GPT-4o presented an interesting exception, initially scoring higher than the application in both 

relevance and completeness for the news category. However, manual verification revealed 

instances where GPT-4o confidently presented false or outdated information. For example, it 

stated the RTX 5060 Ti was priced around $399 USD, which is inaccurate for any announced 

RTX 50-series model [24]. In another case, both GPT-4o and Llama4 stated that Canada’s 

upcoming federal election was scheduled for October 2025, overlooking the snap election 

called for April 28, 2025 [25]. When prompted about the "myanmar earthquake", GPT-4o 

described a non-existent M6.8 event on April 12, 2025, near Bago. The actual major earthquake 

in 2025 occurred on March 28 near Sagaing (Mandalay region) with a magnitude of 7.7 [26], 

and data from United States Geological Survey (USGS) confirmed no earthquakes exceeding 

magnitude 6.0 in Myanmar during April 2025 [27]. In contrast, all these points were correctly 

reported by the application. 

Consequently, the scores for these three specific news prompts for GPT-4o were manually 

adjusted to 1. This resulted in its average news category scores dropping to 6.44 for relevance 

and 5.78 for completeness, placing it below the application's performance. These examples 

underscore the application's capability to deliver up-to-date and factually accurate information, 

mitigating the hallucination tendencies observed in the baseline LLMs. 
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This finding also highlights a potential limitation of using an LLM as a judge: without external 

verification or grounding information, the LLM judge may struggle to assess the factual 

accuracy of the generated statements. A potential improvement could involve supplying the 

LLM judge with verified factual information, although this may not be a good fit the goal of 

automating the evaluation process to save human effort. 

Conciseness (Fig. 3.18) 

In Fig. 3.18, across all categories of prompts, the application achieved the lowest average 

conciseness score (5.70), whereas Gemini achieved the highest (7.89). The application's design 

instructs it to integrate information from all partial summaries into the final general summary. 

This process may lead to the inclusion of details that exist in the partial summaries but might 

not be strictly essential for a concise general summary. There is an inherent trade-off, as 

enhancing conciseness might omit potentially useful context derived from the partial 

summaries. It will then require users to make follow-up queries for details they might otherwise 

have received upfront. However, users may not always perform such follow-up actions. 

 

Fig. 3.18. Average conciseness scores of the application (LLMSearch) and different LLMs in 

all categories. 
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Model/Category Relevance Conciseness Completeness Overall 

LLMSearch/keywords 9.11 5.22 8.78 7.70 

LLMSearch/complexSentences 9.67 5.89 8.89 8.15 

LLMSearch/news 8.89 6.00 8.22 7.70 

LLMSearch/Overall 9.22 5.70 8.63 7.85 

Gemini/keywords 6.67 7.44 5.11 6.41 

Gemini/complexSentences 9.11 8.11 8.67 8.63 

Gemini/news 4.33 8.11 2.78 5.07 

Gemini/Overall 6.70 7.89 5.52 6.70 

GPT-4o/keywords 9.33 6.33 8.56 8.07 

GPT-4o/complexSentences 9.11 7.44 8.89 8.48 

GPT-4o/news 9.44 6.67 8.44 8.19 

GPT-4o/Overall 9.29 6.81 8.63 8.25 

Llama4/keywords 8.44 6.67 7.67 7.59 

Llama4/complexSentences 9.33 7.89 8.67 8.63 

Llama4/news 6.67 6.67 6.67 6.67 

Llama4/Overall 8.15 7.08 7.67 7.63 

Fig. 3.19 The table of average scores (in 2 decimal points) of LLMs and the application in 

different dimensions across different categories of prompts. 

4.  Discussion 

This section includes the difficulties encountered during the implementation of the project (Sec. 

4.1) and the future work to be done in order to further enhance the application (Sec. 4.2). 

4.1.  Difficulties Encountered 

4.1.1. Use of LLM Service Provider 

Azure was initially chosen as the LLM service provider due to its access to OpenAI's models, 

particularly since OpenAI's APIs are unavailable in Hong Kong. However, during backend 

integration, it was discovered that Azure’s default rate limit was exceeded after processing the 

top three results twice within 10 seconds, which is by far insufficient for our application’s needs. 

Additionally, Azure only provides access to older models like GPT-3.5 and GPT-4 by default, 

and upgrading to advanced models like GPT-4 or increasing rate limits requires additional 

approval from Microsoft.  
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To address these limitations, alternative LLM service providers such as Hyperbolic (with a rate 

limit of 600 requests per minute) and DeepSeek were tested. Currently, the project uses 

OpenRouter as the LLM service provider due to its wide catalog of LLM services. After testing, 

Gemini 2.0 Flash was finally chosen as it provides a good balance between throughput, cost 

and performance. As the capabilities of LLMs continue to evolve, other LLMs and providers 

will continue to be evaluated to balance performance and efficiency. 

4.1.2. Responsiveness of the Application 

Parsing and loading webpages with Puppeteer is often required. However, using Puppeteer can 

be time-consuming, with processing times reaching up to 10 seconds for a URL. The processing 

times can be further increased by slow responses from the parsed webpages. To reduce the 

loading time, a hybrid approach of web parsing is now used where an HTTP GET request is 

attempted first before using Puppeteer. 

Furthermore, in the prototype, the backend handled the user search query and returned all 

results and summaries in a single HTTP request and response, forcing users to wait until all 

summaries are generated before seeing any results. This creates the impression of a slow or 

unresponsive service. The single search endpoint has since then been split into multiple 

requests, allowing webpage summaries to be displayed as they are generated. When combined, 

these 2 approaches help increase the responsiveness of the application. 

4.2.  Future Work 

Future development will focus on several key areas to enhance the application's utility and 

performance. User convenience could be improved by implementing a search history feature, 

allowing users to revisit past queries and results stored within the database. In addition, the 

recursive search capability currently requires users to manually select one of the provided 

search suggestions. In the future, performing recursive search can be automated, enabling the 

backend to automatically perform follow-up searches when initial results are deemed 

insufficient, though the latency caused by the additional searches has to be assessed.  

Optimization efforts will continue to target application response times. Technologies such as 

WebSocket can be used to provide a stream of text outputs from the LLMs, thus reducing the 

perceived response time of the application. However, WebSocket requires a continuous 

connection between the server and the client during usage, which does not suit the stateless 

nature of Lambda functions well. Alternatives such as using EC2 to host the backend will be 
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considered. In addition, as the capability of LLMs continues to evolve, continuous assessment 

and integration of newer and more efficient LLMs remain crucial. 

Web scraping is one area where further optimization is needed. This includes further 

exploration of caching strategies for frequently accessed content. However, caching may 

require a large user base to be effective. Alternatively, third-party web scraping APIs may offer 

a higher performance than the current implementation but may prove costly especially as the 

number of users of the application grows. 

Enhancements to the authentication system and security are also planned. Implementing 

stronger user authentication methods, such as two-factor authentication or social logins, would 

bolster account security. These improvements in security would also lay the groundwork for a 

potential future payment system to manage the costs of using LLMs, search services and the 

possible use of web scraping APIs. 

Lastly, potential enhancements can be made to the automatic evaluation script to facilitate fact 

checking without human verification. For example, like LLMSearch, the judging LLM can 

itself create search queries and use search engine and web scraping APIs to search the web for 

information validation. To ensure unbiased evaluations, the search function would need to be 

implemented differently than the current searching implementation of the application. 

Otherwise, the judging LLM would likely receive the same information as the application, and 

conclude that the application’s outputs are correct based on the same web search results. This 

could involve using different search APIs or using different prompts to generate search queries. 

5.  Conclusion 

This report presented the development of a cross-platform web search application designed to 

combine the strengths of traditional search engines and AI-powered chatbots while addressing 

their limitations. By retrieving search results through APIs, reordering them for relevance, and 

generating concise summaries, the project aims to improve the efficiency and reliability of the 

search experience. The frontend and the backend of the application have been developed and 

deployed, demonstrating the potential for better clarity and relevance compared to traditional 

search engines. This advancement could be a step forward in enhancing the user experience in 

online information retrieval by providing accurate information in a streamlined and concise 

format. Evaluations have been performed using LLMs as judges and they demonstrated the 

application's effectiveness, particularly in delivering accurate and up-to-date information for 
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news-related queries while successfully mitigating the hallucination and knowledge cutoff 

issues prevalent in other LLMs. While scoring highly on relevance and completeness, the 

evaluations also highlighted a trade-off resulting in lower conciseness compared to some 

models, due to the comprehensive nature of the generated general summaries. 

While difficulties including the high response time of the application were alleviated by the 

splitting of the backend endpoints and the flexible structure allowing the rapid change of LLM 

service providers, limitations persist. The system's response time remains dependent on the 

search engine API and web scraping mechanisms, and the implemented automated evaluation 

faces difficulties in assessing factual accuracy without additional human-verified information. 

Furthermore, the current reliance on processing partial summaries - a strategy used to 

circumvent the present constraint of context window sizes - could be revisited as LLM 

capabilities evolve. The trend towards larger context windows might eventually allow for the 

direct and effective summarization of full webpage content, potentially simplifying the 

architecture and significantly reducing the application’s response time. 

Overall, this project successfully demonstrates a viable approach to synthesizing search results 

using LLMs, paving the way for future advancements in information retrieval. 
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