

Detailed Project Plan
UML Class Diagram Drawing Using or Assisted by Natural Language
Prompts as a Web Based Application

By KWOK Chak Lai (Lefinno), LIU Hao Wei (Roger), WONG Sum Yi
(Jenny)

Group fyp24050

1 – Project Background

1.1 Context and Motivation
Effective communication is crucial for any software project, whether it involves clients or
internal teams, and diagrams are an excellent tool to facilitate this. Specifically, systems
diagrams are a useful means of communicating ideas, proposals, plans, among others.
With the use of standardized unified modeling language (UML) rules, these diagrams can
be well-understood with little ambiguity (Booch et al., 1999).

Class diagrams, a type of system diagram, are used to model the static structure of a
system; they can be used to model the objects within the system, the relationships
between these objects, the role of these objects and what services they provide. They are
typically drawn with boxes representing classes, which contain the methods and values
these classes may contain, along with lines linking classes together and representing their
relationships (IBM, 2021). An example of such a class diagram is shown below in Figure 1.
The reasons for picking class diagrams specifically for our project will be elaborated on
later in Section 2.1.

Figure 1: Sample Class Diagram (IBM, 2021)

With current methods, creating such diagrams is usually tedious and time consuming, as
the primary means of creating such diagrams is by hand-drawing them, which may lead to
these diagrams being drawn as informal images, reducing their usefulness (Conrardy &
Cabot, 2024).

1.2 Existing Technology and Studies
The rise in popularity and progression in performance of Large Language Models (LLMs)
have been quite prominent in recent years, which has led to their use in more than just text
generation and machine translation. In particular, they have shown some promise in image
generation, however directly generating a diagram using image generation algorithms is
unwise, as they are generally unable to generate graphs directly (Cámara et al., 2023).

However, that is not to say that LLMs cannot be used to create these system diagrams, as
LLMs can reliably be used to generate diagrams via Planttext and using PlantUML, which is
a text-based diagramming tool. As an example, this is the technique used by Conrardy and
Cabot (2024), where the authors used LLMs to turn human hand-drawn picture inputs into
Planttext, which was then displayed as a diagram with PlantUML. Their investigation
primarily focused on generating relatively simple diagrams in PlantUML that were correct
in terms of syntax and determining which of their prompts were the most successful.

Many other research papers, such as Ferrari et al. (2024) and Fill et al. (2023) focus on
creating system diagrams with LLMs use a similar method (using Planttext). In addition,
this project can streamline a tedious process and provide substantial benefit in that

regard. It is important to note, however, that the studies we have read have all mentioned
limitations about the performance of LLMs in this task, with some struggling with
correctness and completeness.

1.3 Implementation Philosophy
The goal of this project, as mentioned previously, is to make the creation of systems
diagrams a more intuitive and user-friendly process, and better streamline the process of
communication between managerial and developmental groups. Outsourcing jobs in
development has become more prominent in recent times, and not everything related to a
project will be necessarily done in-house, so effective communication via diagrams is vital.
As such, it is important to make diagramming accessible to those that may have little
background in software engineering with a user-friendly design, though this requires the
model itself to be very accurate and precise in drawing a diagram in accordance with the
user's requirements, as the potential for miscommunication with a mis-drawn diagram is
quite high. Perhaps for the time being, this tool may be used to make diagram drawing less
of a hassle for software engineers, as recent research has shown LLMs struggle with
accuracy when drawing such diagrams (Cámara et al., 2023).

2 – Project Objective

2.1 Overall Objective
This project's overall objective is to develop a web application that assists users in drawing
UML class diagrams by leveraging natural language prompts. Our goal is to streamline the
process of software design and development by increasing the efficiency and speed of
UML diagramming, meanwhile also improving the communication between all
stakeholders involved in the development process, regardless of whether they come from
a technical background or not. We also aim to increase the accessibility of UML
diagramming by providing a more intuitive way to go about diagram creation and allowing
users to create complex class diagrams without needing extensive knowledge of UML
syntax or diagramming tools.

As there is a large variety of UML diagrams involved in the software engineering process, it
will be hard for us to design and train an LLM that can cover the entire scope of UML
diagrams. Therefore, for this project we will be focusing on UML class diagrams which are
used to visualize the components within a system and the relationships between them.

The preliminary design of the core framework can be represented in the flow chart below,
in Figure 2. This core framework can also be expanded upon to create more natural
language interfaces with other purposes.

By the end of this project, we aim to deliver a working prototype of our web application and
a comprehensive report on its efficacy, outlining the abilities of our application and its
limitations. At the most minimal, we aim to deliver a web application that is able to take in
natural language inputs from the user, have a LLM process the prompts and output a UML
class diagram that accurately represents the user’s input.

Figure 2: Sample Flowchart of Core Framework

2.2 Incremental Objectives
Our project can be more definitively broken down into the following objectives:

• Developing a web-based application: It is first necessary to establish a server
framework and create a user-friendly interface that allows users to enter prompts
and view their results.

• Designing and training an LLM for our needs: Further research needs to be done
on LLMs in order to find one that best fits our needs and requirements. After
deciding on an algorithm, we may need to develop and train the model, making sure
to validate the result of the model and make improvements if necessary.

• Natural language processing integration: An algorithm needs to be developed in
order to interpret and parse user prompts, process them along with its context, and
output corresponding UML class diagram elements such as classes, attributes and
relationships.

• Diagram visualisation: In order to enable users to visualise the output of the
model, we need to create an algorithm that can take in natural language outputs
from the LLM and display them on the web application in the form of a UML class
diagram.

• Testing and refinement: We need to make sure that our code is robust and that it
generates responses accurately and in enough detail. Both subjective and objective
validation should be done to evaluate the effectiveness of our model such that it
can be improved upon.

• Explore future enhancements: Once we have established a working prototype, we
can use the remaining time to explore and implement additional quality of life
features to our application.

By the end of this project, apart from completing the above objectives, we also hope to
gain invaluable knowledge and insight into the software development process and the
inner workings of large language models.

3 – Project Methodology

3.1 Project Management Style
For this project, considering our non-standard schedules and individual specialties, we
adopt an Agile-inspired approach centered around Kanban methodology. This approach
balances individual autonomy with team coordination while maintaining a flexible
timetable. Key aspects of our project management style include:

1. Flexible task management: Utilizing a Kanban board to visualize workflow and
manage tasks asynchronously.

2. Regular check-ins: Brief weekly meetings to align progress, address challenges, and
adjust priorities as needed.

3. Collaborative tools: Leveraging version control systems and project management
software to facilitate seamless coordination.

4. Incremental deliveries: Focusing on completing smaller, functional components
rather than large chunks of work.

5. Adaptive planning: Regularly reassessing project priorities and adjusting our
approach based on progress and emerging requirements.

This management style allows us to maintain productivity despite our varying schedules,
while ensuring consistent progress towards our project goals. It also promotes clear
communication and efficient resource allocation among team members.

3.2 Collaboration Platform and Collaboration Guidelines
For our project, we will utilize GitHub as our primary collaboration platform. This choice
aligns with industry best practices and leverages GitHub's robust features for version
control, project management, and team collaboration. Our GitHub workflow will be
inspired by successful open-source projects and will include the following key elements:

1. Branch Naming Convention:
a. feature/[feature-name] for new features
b. bugfix/[bug-description] for bug fixes
c. hotfix/[issue-number] for critical fixes
d. release/[version-number] for release preparations

2. Commit Message Format:
a. Start with a capitalized imperative verb (e.g., "Add", "Fix", "Update")
b. Keep the first line under 50 characters
c. Provide a detailed description in subsequent lines if necessary

3. Pull Request (PR) Process:
a. Create a PR with a clear title and description
b. Link relevant issues in the PR description
c. Assign at least one reviewer
d. Address all comments before merging

4. Code Review Checklist:
a. Check for code style consistency
b. Verify functionality and edge cases

c. Ensure adequate test coverage
d. Look for potential security issues

5. Release Process:
a. Create a release branch
b. Update version numbers and changelog
c. Conduct final testing
d. Merge to main and tag the release

3.3 Technology Stack
Go for backend, React for frontend, having client-side rendering, client-side caching and
storage, with no login needed. Display logic handled in the front end, user input
processing, prompt querying, etc., will be on the backend. We will use WebSocket for our
API protocol for now since it is a full duplex session and it's easier for us to do interactive
stuff which we need.

Component Choice Rationale
Backend
Language

Go (Golang) - Excellent performance for handling concurrent
connections
- Strong standard library support for HTTP and
WebSockets
- Efficient resource usage, ideal for scaling
- Easy deployment with single binary output
- Good support for writing clean, maintainable code

WebSocket
Library
(Backend)

Gorilla
WebSocket

- Well-maintained and widely used in the Go ecosystem
- Provides a robust implementation of the WebSocket
protocol
- Offers good performance and low overhead
- Easy to integrate with standard Go HTTP servers

Frontend
Framework

React - Component-based architecture for reusable UI
elements
- Virtual DOM for efficient updates and rendering
- Large ecosystem and community support
- Good performance for interactive applications
- Easy to integrate with WebSocket libraries

WebSocket
Library
(Frontend)

react-use-
websocket

- React hooks-based library for easy WebSocket
integration
- Provides a clean API for managing WebSocket
connections
- Handles reconnection logic and connection status
- Compatible with functional components and modern
React practices

State
Management

React Hooks
(useState,
useContext)

- Built-in React feature, no additional libraries needed
- Simplifies state management for medium-sized
applications
- Reduces boilerplate compared to Redux for simpler
use cases
- Easy to use and understand, promoting cleaner code

Client-side
Storage

LocalStorage - Provides persistent storage across sessions
- No private project data stored on server side

Communicati
on Protocol

WebSocket - Full-duplex, real-time communication
- Lower latency compared to HTTP polling
- Efficient for frequent, small messages
- Ideal for interactive, real-time applications
- Good support in both modern browsers and server
environments

LLM API
Integration

Flexible
(local or
cloud-based)

- Allows for integration with various LLM providers (e.g.,
OpenAI, Hugging Face)
- Flexibility to switch between local and cloud-based
solutions
- Enables future-proofing as LLM technology evolves
- Can be tailored to specific performance or cost
requirements

Development
Environment

Docker - Ensures consistency across development
environments
- Easy to set up and reproduce the development
environment
- Simplifies deployment and scaling processes
- Can include all necessary dependencies in a single
container

Version
Control

Git with
GitHub

- Industry standard for version control
- Facilitates collaboration and code review processes
- Integrates well with CI/CD pipelines
- Provides additional features like issue tracking and
project management

3.4 Workflow Definition
In a typical development workflow, the process begins with feature planning and task
creation, where new requirements are identified and broken down into manageable tasks.
Developers then implement these features, adhering to coding standards and writing unit
tests as they go. Once the initial implementation is complete, the code undergoes peer
review, where feedback is provided, and improvements are made. Following this, a
comprehensive testing phase occurs, including automated unit tests, integration testing,
and manual testing to verify functionality and user experience. If bugs are discovered

during testing, they are logged, analyzed, and fixed in a debugging cycle, with fixes being
verified through additional testing. Documentation is updated to reflect new features or
changes, and the code is then integrated into the main development branch. After
successful integration, the new features are deployed to a staging environment for final
checks before moving to production. Post-deployment, feedback is gathered, and any
necessary adjustments are identified. Throughout this process, there's a focus on
continuous improvement, with regular reviews of development processes and
implementation of refinements. This workflow provides a structured yet flexible approach
to adding features, debugging, and testing, ensuring consistent quality and progress in
software development.

3.5 Deployment and Testing Procedures

Development and Local Testing:

Developers work on features and bug fixes, writing and running unit tests as they go. They
perform basic functional testing on their local machines to catch obvious issues. Once
satisfied with their work, developers commit their code to the shared repository.

Scheduled Testing:

At regular intervals, the tester pulls the latest code from the repository. They set up a fresh
Docker environment to ensure consistency and isolation. Within this environment, the
tester runs a predefined set of tests, including integration tests, user interface tests, basic
performance checks, and any specific tests relevant to recent changes. All issues found
during this testing phase are carefully documented.

Bug Review and Planning:

After the testing phase, the entire team comes together to review the bug list compiled by
the tester. They discuss each issue, prioritizing bugs based on their severity and potential
impact on the project. Bugs are then assigned to developers to be addressed in the next
development cycle.

Next Development Cycle:

With bug assignments in hand, developers begin the next cycle. They focus on fixing the
identified issues alongside continuing work on new features. This cycle then repeats,
starting again with the Development and Local Testing phase.

3.6 Performance Measurement Metrics
Ferrari et al. (2024) mentions that their assessment criteria for their LLM-generated
systems diagrams involved "correctness, completeness, adherence to standard,
understandability, terminological alignment", and we believe this is a good set of criteria
for a system diagram. Wang et al. (2024) goes more in-depth about the criteria of
'correctness', which we will borrow some ideas from.

When assessing the quality of a system diagram, there are several factors that must be
accounted for, however the factors that we will use when assessing our model-generated
diagrams are as follows:

• Correctness
• The diagrams generated must adhere to UML modeling rules.

▪ This requirement is objective and is thus relatively easy to work with.
• Completeness

• The diagrams must adhere to the requirements set out by the user
▪ It is important to note that this is subjective in nature; what is required

by one person may not be the same as another person, as they may
have different interpretations of the same requirements. In other
words, the generated diagram must convey the same meaning as the
intention of the user

▪ One solution to the subjectivity issue used by Ferrari et al. (2024) and
Wang et al. (2024) is to have the authors of the paper assess the
models created and determine if it was successful or not.

• Understandability
• The diagram must be sufficiently clear, readable and understandable, and

should not contain repeated elements if at all possible.
▪ Similarly to the previous point, this is also quite subjective in nature,

as people will have differing opinions on what is and is not
understandable. Because of this, our solution will be to have our
group members assess the models created.

There is unfortunately no effective way to assess the more subjective aspects of a system
diagram, as individuals will have differing opinions on these criteria, so our solution would
be like those used by the authors mentioned in the above papers and have the members of
our group provide assessments of our diagrams.

4 – Project Schedule and Milestone

4.1 Project Milestones and Milestone Definitions
To assist with our development, we have broken down our development process into clear
phases and created corresponding milestones. We have also separated our milestones
into two categories: core and auxiliary. Core milestones are milestones that outline the
development of our application, while auxiliary milestones are those that focus on
enhancing our application by implementing additional features.

Subsequent to our initial meeting, we have decided upon the following core milestones:

Milestone Description
MS1 This phase focuses on establishing the framework for our application. This

includes exploring hosting and deployment options and setting up our
server infrastructure. Some basic API calls should be established to test
that the server environment is working as expected.

MS2 This phase focuses on establishing the baseline functionality for our
application. At this point, our application should be able to allow a user to
input natural language prompts, process them and generate a basic UML
class diagram.

MS3 This phase focuses on extending the functionality of our application and
enhancing the ability of our LLM. The user should be able to input
additional natural language prompts in order to modify, add, link and group
classes. Meanwhile, our LLM should be able to utilise spatial context
awareness and selective context inclusion in order to enable it to generate
more complex UML class diagrams.

Furthermore, the following auxiliary milestones have been proposed as additional features
that we can include in our application should time allow:

Milestone Description
MS4 This milestone focuses on improving interface design such that our

application is more intuitive and user-friendly, providing a better user
experience overall.

MS5 This milestone focuses on implementing additional functionalities to allow
user to edit generated UML class diagrams manually so that they can make
small corrections to the diagram while also utilising the LLM to assist them
in diagramming when necessary, further enhancing their overall workflow.

MS6 This milestone focuses on improving and refining the LLM for generating
our UML class diagrams. Furthermore, additional functionality can be

added to allow the user to change AI cores and test which model performs
the best.

4.2 Project Schedule and Timeline
The following is our preliminary schedule for completing our core milestones:

Milestone Scheduled Completion Date
MS1 Mid - Late Oct 2024
MS2 Early Jan 2025
MS3 Early - Mid March 2025

As development progresses, the content and completion date of our auxiliary milestones
will be adjusted and decided upon.

5 – References
Booch, G., Rumbaugh, J., Jacobson, I. (1999). Unified Modeling Language User Guide, The
(2nd Edition). Addison-Wesley Object Technology Series.

IBM. (2021). Class Diagrams. Retrieved from
https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams.

Conrardy, A., & Cabot, J. (2024). From Image to UML: First Results of Image Based UML
Diagram Generation Using LLMs. https://doi.org/10.48550/arXiv.2404.11376

Cámara, J., Troya, J., Burgueño, L., Vallecillo, A. (2023). On the assessment of generative AI
in modeling tasks: an experience report with ChatGPT and UML. Software and Systems
Modeling 22, 1-13. https://doi.org/10.1007/s10270-023-01105-5

Fill, H-G., Fettke, P., Köpke, J. (2023). Conceptual Modeling and Large Language Models:
Impressions From First Experiments With ChatGPT. Enterprise Modelling and Information
Systems Architecture 18, 1–15. https://doi.org/10.18417/emisa.18.3

Ferrari, A., Abualhaija, S., Arora, C. (2024). Model Generation with LLMs: From
Requirements with to UML Sequence Diagrams.
https://doi.org/10.48550/arXiv.2404.06371

Wang, B., Wang, C., Liang, P., Li, B., & Zeng, C. (2024). How LLMs Aid in UML Modeling: An
Exploratory Study with Novice Analysts. https://doi.org/10.48550/arXiv.2404.17739

https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams
https://doi.org/10.48550/arXiv.2404.11376
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.18417/emisa.18.3
https://doi.org/10.48550/arXiv.2404.06371
https://doi.org/10.48550/arXiv.2404.17739

	1 – Project Background
	1.1 Context and Motivation
	1.2 Existing Technology and Studies
	1.3 Implementation Philosophy

	2 – Project Objective
	2.1 Overall Objective
	2.2 Incremental Objectives

	3 – Project Methodology
	3.1 Project Management Style
	3.2 Collaboration Platform and Collaboration Guidelines
	3.3 Technology Stack
	3.4 Workflow Definition
	3.5 Deployment and Testing Procedures
	Development and Local Testing:
	Scheduled Testing:
	Bug Review and Planning:
	Next Development Cycle:

	3.6 Performance Measurement Metrics

	4 – Project Schedule and Milestone
	4.1 Project Milestones and Milestone Definitions
	4.2 Project Schedule and Timeline

	5 – References

