
THE UNIVERSITY OF HONG KONG

COMP4801 Interim Report

Fixed-Price Mechanisms in

Bilateral Trade

Research on Algorithm Design and Analysis

Supervisor: Student:

Prof. Huang, Zhiyi Zhang Yiran

(3035844338)

School of Computing and Data Science

Jan 2025

Abstract

This project studies social welfare maximization in bilateral trade. The model

comprises one seller, one buyer, and one item they want to trade. As research

shows that no truthful mechanisms can be socially efficient, there has been ex-

tensive work on approximating optimal social welfare. In this project, our work

focuses on two recent studies that give the best-known approximation ratio using

Fixed-Price Mechanisms. The goal is to follow their analysis and use more effi-

cient programs on this problem. In the second part of this project, we also work

on the multi-unit bilateral trad, where the seller holds multiple identical items.

i

Acknowledgments

I would like to express my sincerest gratitude to my supervisor, Prof. Huang,

Zhiyi, for his expertise and guidance in this project. His valuable advice, feedback,

and insights are significant in shaping this work.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables iv

1 Introduction 1

1.1 Background . 1

1.2 Related Research . 3

1.3 Motivation and Objectives . 3

1.4 Outline . 4

2 Analysis Methods 5

2.1 Characterizing the optimal price distribution for buyer distribution 5

2.2 Characterizing the optimal mechanism under full prior information 10

3 Work and Discussion 12

4 Work Plan 15

5 Conclusion 16

iii

List of Tables

3.1 Comparison of running time (s) . 14

iv

Chapter 1

Introduction

The bilateral trade model studies that one buyer and one seller trade an indivisible

item. Research shows that no incentive-compatible, individually rational, and

budget-balanced mechanism can achieve the optimal social welfare [6]. Motivated

by this impossibility result, many researchers have been working on approximately

efficient mechanisms. The Fixed-Price Mechanism posts a price p, and trade

occurs if both agents accept this price. Two recent studies respectively show that

there exists a fixed price mechanism that guarantees 0.71 [5] and 0.72 [3] fraction

of the optimal social welfare for any buyer and seller value distributions, and

no fixed price mechanism can achieve more than 0.7381 fraction of the optimal

welfare. In the first phase of the project, our work is to do an in-depth analysis

of their methods, follow their analysis and try to improve the efficiency and

preciseness of the approaches. In the second phase of the project, we will work

on the generalized bilateral trade setting with multiple identical items.

1.1 Background

This section provides relevant background information on the Bilateral Trade

Model, Fixed-Price Mechanisms, approximation algorithms, and the Multi-unit

Bilateral Trade Model.

1

Bilateral Trade Model In the bilateral trade model, a seller owns an indivis-

ible item, and a buyer wants to purchase it. Both agents have private valuations

about the item, we denote the seller’s valuation as s and the buyer’s valuation

as b. We only know the public probability distribution (cumulative distribution

functions) from which the valuations are drawn, i.e., s ∼ FS, b ∼ FB. A socially

efficient mechanism always trades when the buyer has higher values, and never

trades if the seller has higher values.

Fixed-Price Mechanisms The Fixed-Price Mechanism posts p as the price.

Individual Rationality requires that s ≤ p ≤ b , that is, both agents accept

the price if and only if they expect non-negative payoffs. In some cases, agents

may lie about their valuations in order to gain more benefits from trade. The

Fixed-Price Mechanism is Dominant Strategy Incentive Compatible, agents have

no incentive to deviate from using the strategy of their true valuations. This

mechanism is also Strongly Budget Balanced, that is, the payment of the buyer

is fully transferred to the seller.

Social Welfare and Approximation Ratio The social welfare is b if the

trade occurs and s otherwise. The optimal social welfare is defined as OPT =

Es∼FS ,b∼FB
[b + (b− s) · 1s≤b]. The welfare of the Fixed-Price Mechanism using p

as the price is ALG = Es∼FS ,b∼FB
[b+ (b− s) · 1s≤p≤b].

The approximation ratio describes the performance of the mechanism on the

worst-case instance:

α = min
I=(FS ,FB)

ALG(I)

OPT(I)

To maximize the above ratio is equivalent to maximize the welfare obtained by

the mechanism.

Multi-unit Bilateral Trade Model The Multi-unit Bilateral Trade Model

studies one buyer and one seller who holds k identical items. Both agents have

increasing submodular valuations for the number of units they own. An instance

is a distribution over seller and buyer valuation functions. The mechanism M

2

needs to decide the number of items q transferred from the seller to the buyer

and the payment p transferred from the buyer to the seller.

1.2 Related Research

In 1983, Myerson and Satterthwaite [6] initiated the study on the bilateral trade

model. Their work shows that as long as the buyer and seller distributions are

continuous with positive probability densities and the value distribution intervals

overlap, no truthful mechanism can be socially efficient. Many researchers have

been working on exploring what is possible.

Some fixed price mechanisms are efficient in approximating social welfare. The

Median Mechanism [2] sets the median of the seller distribution as the price.

This mechanism provides a 1
2
approximation. The Random Quantile Mechanism

[1] chooses a quantile x randomly from a certain distribution and outputs the

x-quantile of the seller distribution as the price. This mechanism is an 1 − 1
e

approximation. The Optimal Fixed Price Mechanism [5] [3] posts a price that

maximizes the welfare of the mechanism. The approximation ratio is around 0.71

and 0.72 respectively. In terms of using fixed price mechanisms to approximate

welfare, this mechanism is the most efficient.

[4] is on the Multi-unit Bilateral Trade Model. They show Generalized Median

Mechanism provides a 1
2
approximation and Generalized Random Quantile Mech-

anism is a 1− 1
e
approximation in this setting.

1.3 Motivation and Objectives

Work Related to Fixed-Price Mechanisms Two papers [5] [3] on Fixed-

Price Mechanisms that give the best known bound of 0.71 and 0.72 both apply

the method of numerically solving a program to approach the approximation

ratio, leaving a relatively small gap from the impossibility result of 0.7381. They

also state in the paper that the lower bound and the upper bound can converge

with more computational resources. In this project, one objective is to improve

3

the efficiency in design and implementation of programs to get a better result

following their analysis.

Work Related to Multi-unit Bilateral Trade Currently the best bound

of 1 − 1
e
is provided by the Generalized Random Quantile Mechanism [4], and

there are no hardness results. In this project, we plan to work generalizing the

mechanisms in [5] [3] in this setting with multiple identical items, and see whether

the bound can be preserved or there are instances leading to hardness results.

1.4 Outline

The remaining of this report proceeds as follows. Chapter 2 explains the flow

of analysis in two research papers [5] [3] that are close to this work. Chapter

3 discusses the current work on Fixed-Price Mechanisms. Chapter 4 provides a

plan for the work in the next phase on the multiple item setting. Chapter 5 is a

conclusion for this report.

4

Chapter 2

Analysis Methods

The part of this project related to Fixed-Price Mechanisms follows the analysis in

two researches [5] [3], this section briefly introduces their analysis and programs.

2.1 Characterizing the optimal price distribu-

tion for buyer distribution

In [5], the authors consider the setting that the mechanism is given only FB.

They characterize the optimal price distribution with respect to FB, and the

mechanism posts a price p sampled from this distribution. They prove a lower

bound of 0.71 and an upper bound of 0.7381 for this mechanism. Their general

idea for proving the lower bound is introduced in this section.

To prove α is a lower bound, it is equivalent to show that:

min
I=(FS ,FB)

max
FP

{Ep[ALG(I; p)− α ·OPT(I)]} ≥ 0 ∀I

We write F̄B(b) = 1 − FB(b) as the complementary CDF. The above inequality

5

can be rewritten as:

min
I=(FS ,FB)

max
FP

{Ep[Es[s+

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
· 1s≤p]]

− α · Es[s+

∫ ∞

s

F̄B(b)db]} ≥ 0 ∀I

Knowing one-sided prior information can never be better than knowing two-sided

prior information. A lower bound of the former directly implies a lower bound

of the latter. The authors consider the setting that only FB is given, and show

the existence of a FP with respect to any FB such that the inequality is satisfied

for any FS. Fix an arbitrary FB, it is sufficient and necessary to show that there

exists a price distribution FP (CDF) such that for any s ≥ 0:

s+ Ep∼FP
[

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
· 1s≤p]

− α ·
(
s+

∫ ∞

s

F̄B(b)db

)
≥ 0

We write fp as the PDF. This is further equivalent to:

(1− α)s+

∫ ∞

s

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
fp(p)dp

− α

∫ ∞

s

F̄B(b)db ≥ 0 ∀s ≥ 0

fp should satisfy that (1) it has non-negative densities, (2) the above inequality

holds, and (3)
∫∞
0

fp(p)dp = 1.

Consider an optimization problem that minimizes
∫∞
0

fp(p)dp subject to con-

straints (1) and (2). Suppose an f
′
p satisfies (1) and (2), and

∫∞
0

fp(p)
′
dp < 1,

we can always find a fp that satisfies (3) without violating (1) and (2) by adding

positive densities at fp(0). But if
∫∞
0

fp(p)
′
dp > 1, then there is no way to find a

feasible fp.

Therefore, to prove α is a lower bound is equivalent to show that
∫∞
0

fp(p)dp ≤ 1.

6

Notice that (1−α)s is strictly increasing in s, and α
∫∞
s

F̄B(b)db is non-increasing

in s. There exists a unique s̄ such that:

(1− α)s̄ = α

∫ ∞

s̄

F̄B(b)db

For any s ≥ s̄, (2) is satisfied naturally.

The optimal price distribution f ∗
p that achieves the minimum of

∫∞
0

fp(p)dp

should satisfy that:

(1− α)s+

∫ ∞

s

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
f ∗
p (p)dp

− α

∫ ∞

s

F̄B(b)db = 0 ∀0 ≤ s ≤ s̄

f ∗
p (s) = 0 ∀s > s̄

That is, for any 0 ≤ s ≤ s̄,

f ∗
P (s) = α ·

(
F̄B(s)∫∞

s
F̄B(b)db

−
∫ s̄

s
F̄B(b)

2db(∫∞
s

F̄B(b)db
)2
)

+ (1− α) ·
∫∞
s̄

F̄B(b)db(∫∞
s

F̄B(b)db
)2

WLOG, assume s̄ = 1. We then have
∫∞
1

F̄B(b)db =
1−α
α

. To prove α is a lower

bound is equivalent to show
∫ 1

0
f ∗
p (s)ds ≤ 1.

f ∗
P is represented by α and functions of F̄B. It is difficult to find the anti-derivative

and calculate
∫ 1

0
f ∗
p (s)ds directly, the idea is to use discretization and verify the

inequality for all non-increasing step functions F̄B in domain [0, 1].

Discretization The step function F̄B may decrease at any point in {0, 1
n
, 2
n
, · · · , 1},

and it is restricted to take values from {0, 1
n
, 2
n
, · · · , 1}. We use F̄

′
B to denote the

function before discretization. On grid points, round it down to the largest fea-

sible value:

F̄B(
i

n
) = ⌊F̄ ′

B(
i

n
) · n⌋ · 1

n

7

For any s ∈ (i−1
n
, i
n
), extend the value of F̄B(

i
n
):

F̄B(s) = F̄B(
i

n
)

F̄B(s)
2 is obtained by taking the square of F̄B(s). We can get

∫ 1

s
F̄B(b)db and∫ 1

s
F̄B(b)

2db directly by their geometric meanings. For any s ∈ (i−1
n
, i
n
]:

∫ 1

s

F̄B(b)db = (
i

n
− s) · F̄B(

i

n
) +

n∑
j=i+1

F̄B(
j

n
) · 1

n

∫ 1

s

F̄B(b)
2db = (

i

n
− s) · F̄B(

i

n
)2 +

n∑
j=i+1

F̄B(
j

n
)2 · 1

n

Notice that after discretization, F̄B(s) can take values from {0, 1
n
, 2
n
, · · · , 1},∫ 1

s
F̄B(b)db can take values from {0, 1

n2 ,
2
n2 , · · · , 1}, and

∫ 1

s
F̄B(b)

2db can take val-

ues from {0, 1
n3 ,

2
n3 , · · · , 1}.

Dynamic Programming Algorithm The authors use a Dynamic Program-

ming algorithm to search for the F̄B(s) that achieves the maximum of
∫ 1

0
f ∗
p (s)ds.

We first note that:

∫ 1

0

f ∗
p (s)ds =

n−1∑
0

∫ (i+1)/n

i/n

f ∗
p (s)ds

Using the discretized F̄B(s),
∫ 1

s
F̄B(b)db and

∫ 1

s
F̄B(b)

2db, we have:

∫ (i+1)/n

i/n

f ∗
p (s)ds =

α
(
F̄B(

i+1
n
)
∫ 1

(i+1)/n
F̄B(b)db−

∫ 1

(i+1)/n
F̄B(b)

2db
)
+ (1− α)2/α∫ 1

(i+1)/n
F̄B(b)db

(
F̄B(

i+1
n
)
∫ 1

(i+1)/n
F̄B(b)db+

1
n
F̄B(

i+1
n
)
) · 1

n

∫ (i+1)/n

i/n
f ∗
p (s)ds can be represented by α and values that are multiples of 1

n
, 1

n2

and 1
n3 .

8

We use Solk(x, y, z) to denote the objective value of the problem:

max

∫ k/n

0

f ∗
p (s)ds

s.t. x = F̄B(
k

n
)

y =

∫ 1

k/n

F̄B(b)db

z =

∫ 1

k/n

F̄B(b)
2db

The Dynamic Programming algorithm is presented as follows:

1. Initialize Sol0 by a (n+ 1)× (n2 + 1)× (n3 + 1) 3d-array of zeros

2. for k in range [0, n− 1]:

3. Initialize Solk+1 by a (n+ 1)× (n2 + 1)× (n3 + 1) 3d-array of zeros

4. for each cell in Solk+1:

5. if x, y, z form a valid case:

6. for x′ ≤ x:

7. y′ = y − x′/n

8. z′ = z − x′2/n

9. if y′, z′ ≥ 0:

10. if Solk(x, y, z) +
∫ (i+1)/n

i/n
f ∗
p (s)ds > Solk+1(x

′, y′, z′):

10. Solk+1(x
′, y′, z′) = Solk(x, y, z) +

∫ (i+1)/n

i/n
f ∗
p (s)ds

It remains to find the largest value in the array in the last round, we denote this

value as maxFP . The values x, y, z can take are restricted, and they form a valid

case if it holds that (1− s)
∫ 1

s
F̄B(b)

2db ≥
(∫ 1

s
F̄B(b)db

)2
and F̄B(s)

∫ 1

s
F̄B(b)db ≥∫ 1

s
F̄B(b)

2db.

We use f ∗∗
p (s) to denote the price distribution w.r.t. F̄

′
B before discretization.

The discretization error is analyzed as:

err =

∫ 1

0

f ∗∗
p (s)ds−

∫ 1

0

f ∗
p (s)ds ≤ αln

1− α

1− α(1 + 2/n)

9

To prove a lower bound of α requires maxFP + err ≤ 1. The authors implement

the algorithm in Python 3.9, take α = 0.71, n = 75, they prove that 0.71 is a

lower bound.

2.2 Characterizing the optimal mechanism un-

der full prior information

In [3], the authors characterize the optimal Fixed-Price Mechanism for any I =

(FB, FS). They prove a lower bound of 0.72 and an upper bound of 0.7381. This

section introduces the program in their proof.

The mechanism posts a price p that maximizes the social welfare in expectation:

p ∈ argmax
p

Ep[ALG(I; p)]

OPT(I)

As the instances can be scaled, we can assume WLOG that OPT(I) = 1. The

following program is used to capture the worst-case instance for the mechanism:

min
α,FB ,FS

α

s.t. OPT(I) :=

∫ ∞

0

∫ ∞

0

max{s, b}dFB(b)dFS(s) ≥ 1

ALG(I; p) :=

∫ ∞

0

sdFS(s) +

∫ p

0

∫ ∞

p

(b− s)dFB(b)dFS(s) ≤ α ∀p

The solution α is the tight ratio that can be achieved by the optimal Fixed-Price

Mechanism on the worst-case instance FB, FS in the solution set.

But this program cannot be solved directly as it has infinite dimensions, the

authors discretize the support and restrict the mechanism to choose the best

price from this support. They prove that any instance can be discretized and

rounded to this finite support such that it holds discrete − OPT(I) ≥ OPT(I)

10

and discrete − ALG(I; p) ≤ ALG(I; p). The program with finite variables can

be solved by optimization solvers. They choose a specific support and prove an

lower bound of 0.72.

Remark In [5] and [3], the authors give two different methods to prove that the

mechanisms having access to one-sided prior information and full prior informa-

tion give the same approximation ratio. One proof idea [3] is using the Minimax

Theorem. For any fixed FB:

min
FB

max
FP

min
FS

{Ep[ALG(I; p)− α ·OPT(I)]}

= min
FB

min
FS

max
FP

{Ep[ALG(I; p)− α ·OPT(I)]}

= min
I=(FS ,FB)

max
FP

{Ep[ALG(I; p)− α ·OPT(I)]}

Ideally with unlimited computational resources, the lower bound and the upper

bound can converge, and the approximation ratio of two prior information settings

should be the same.

11

Chapter 3

Work and Discussion

As introduced in the previous chapter, [5] and [3] use different analysis and pro-

grams. The program in [3] has quadratic constraints and quadratic objectives,

and is solved using an optimization solver Gurobi. The algorithms the solver use

can keep track of the best solution currently found and the bound of the opti-

mal solution, and we can know the gap between the current one and the optimal

one. These are not polynomial time algorithms, but there have been extensive

research on reducing the running time. The authors choose a specific support for

the program and the solver is effective in solving the problem.

The time complexity of the Dynamic Programming algorithm in [5] is O(n8). In

implementation, the authors represent
∫ 1

s
F̄B(b)

2db approximately by rounding it

to multiples of 1
n2 to reduce the time complexity. In this project, we want to

be more precise and allow
∫ 1

s
F̄B(b)

2db to take multiples of 1
n3 . Then, we need

to implement the algorithm more efficiently to reduce the running time. This

section introduces our work in improving the efficiency in implementation and

design.

The authors implement the algorithm using Python, and the values in the 3d-

array are stored as double, which keeps 16 decimal places. We change the pro-

gramming language and data type to reduce the running time. For n = 35, the

algorithm in [5] run for one hour, by directly switching from Python to Java and

12

from double to float (keeps 8 decimal places), the running time is reduced to 8

seconds.

Another adjustment is to reverse the update order. Symmetrically, we use Solk(x, y, z)

to denote the objective value of the problem:

max

∫ 1

1−k/n

f ∗
p (s)ds

s.t. x = F̄B(1−
k

n
)

y =

∫ 1

1−k/n

F̄B(b)db

z =

∫ 1

1−k/n

F̄B(b)
2db

k is in the set {1, 2, · · · , n}. Solk stores values of
∫ 1

1−k/n
f ∗
p (s)ds with respect to

different x, y, z. The advantage of this adjustment is to make use of the constraints

in
∫ 1

1−1/n
f ∗
p (s)ds:

x = F̄B(1−
1

n
) ≥ F̄B(1−

1

n
+ ϵ)

y = F̄B(1−
1

n
+ ϵ)× 1

n

z = F̄B(1−
1

n
+ ϵ)2 × 1

n

In each round, the objective is updated from maximizing
∫ 1

1−k/n
f ∗
p (s)ds to max-

imizing
∫ 1

1−(k+1)/n
f ∗
p (s)ds. We have the following dependency:

x′ = F̄B(1−
k + 1

n
) ≥ x

y′ =

∫ 1

1−(k+1)/n

F̄B(b)db = y + x× 1

n

z′ =

∫ 1

1−(k+1)/n

F̄B(b)
2db = z + x2 × 1

n

The structure follows the Dynamic Programming algorithm in [5]. In round n,

we have Soln that stores the maximum objective values of
∫ 1

0
f ∗
p (s)ds. It remains

13

to find the largest value in Soln, we denote it as maxFP .

As x can only take values that are multiples of 1
n
and x ∈ [0, 1], we can know all

value combinations of (x, y, z) in calculating
∫ 1

1−1/n
f ∗
p (s)ds. One implementation

idea is to use (x, y, z) as the key and Solk(x, y, z) as the value, and Solk stores

the key, value pairs. An efficient implementation in Java is using HashMap.

Similar structures in other programming languages include dictionary in Python,

and unordered map in C++. But these implementations do not support multi-

threading.

Another implementation is following the authors’ design and use 3d-array, which

allows multi-threading for speeding up. Note that it always holds:

∫ 1−k/n

1−(k+1)/n

f ∗
p (s)ds ≥ 0

The values in the array that are modified to be non-zero have valid combinations

of (x, y, z) as indices. But in terms of memory use, array is not as efficient.

A comparison of running time of different implementations is as follows:

Implementation n=22 n=23 n=24 n=25 n=26

Array original 12 16 23
Array reversed 7 11 15
HashMap 10 13 20 27 38

Table 3.1: Comparison of running time (s)

As we use higher precision to represent
∫ 1

s
F̄B(b)

2db, we notice that main memory

space can be a limitation. For n = 25 and n = 26, there are not enough space in

heap memory for array implementation.

This method relies on the discretization of FB, the discretization error is err ≤

αln 1−α
1−α(1+2/n)

. Our goal is to make sure maxFP + err ≤ 1. To reduce err to

0.05 requires n = 72, for err ≈ 0.03 requires n = 125. Directly following this

method to improve the currently best ratio of 0.72 can be challenging because of

the excessive need for main memory space.

14

Chapter 4

Work Plan

The second part of this project from Jan 2025 is on bilateral trade with multi-

ple identical items. In this project, we focus on mechanisms that are Dominant

Strategy Incentive Compatible, Individually Rational, and Strongly Budget Bal-

anced. [4] propose the Multi-unit Fixed Price Mechanism, which satisfies the

above constraints. The mechanism picks a fixed unit price p and iteratively offers

this price to the seller and buyer until one of the agents rejects. They generalize

the mechanisms in [2] [1] into the multi-unit setting and prove an approximation

of 1
2
for the Generalized Median Mechanism and an approximation of 1 − 1

e
for

the Generalized Random Quantile Mechanism.

Now we know the mechanisms with better lower bounds for the 1 item setting,

we want to know what bounds can be achieved if the mechanisms is generalized

into the multi-unit setting, or if there are instances that lead to hardness results.

The work on the multi-unit setting is to generalize these mechanisms and analyze

their performance.

15

Chapter 5

Conclusion

To conclude, the first part of this project is on Fixed-Price Mechanisms. Following

the analysis in [5], we implement the Dynamic Programming algorithm more

efficiently in terms of running time and memory use. The difficulties are that

reducing the discretization error requires large n. Due to the limitation of the

hardware, improving the current bound would require more insights into the

problem.

In the second phase, the work is on generalized bilateral trade with multiple

identical items. We plan to generalize the mechanisms that give better bounds

for the 1 item setting, and analyze the performance on the multiple-item setting.

16

References

[1] Liad Blumrosen and Shahar Dobzinski. “(Almost) efficient mechanisms for

bilateral trading”. In: Games and Economic Behavior (2021), pp. 369–383.

[2] Liad Blumrosen and Shahar Dobzinski. “Reallocation mechanisms”. In: Proc.

15th ACM Conference on Economics and Computation (EC) (2014), pp. 617–

617.

[3] Yang Cai and Jinzhao Wu. “On the optimal fixed-price mechanism in bilat-

eral trade”. In: Proceedings of the 55th Annual ACM Symposium on Theory

of Computing (STOC) (2023), pp. 737–750.

[4] Matthias Gerstgrasser et al. “Multi-Unit Bilateral Trade”. In: Proceedings of

the AAAI Conference on Artificial Intelligence (2019), pp. 1973–1980.

[5] Zhengyang Liu, Zeyu Ren, and Zihe Wang. “Improved approximation ratios

of fixed-price mechanisms in bilateral trades”. In: Proceedings of the 55th

Annual ACM Symposium on Theory of Computing (STOC) (2023), pp. 751–

760.

[6] Roger B. Myerson and Mark A. Satterthwaite. “Efficient mechanisms for

bilateral trading”. In: Journal of Economic Theory 29.2 (1983), pp. 265–

281.

17

	Abstract
	Acknowledgments
	Contents
	List of Tables
	Introduction
	Background
	Related Research
	Motivation and Objectives
	Outline

	Analysis Methods
	Characterizing the optimal price distribution for buyer distribution
	Characterizing the optimal mechanism under full prior information

	Work and Discussion
	Work Plan
	Conclusion

