
THE UNIVERSITY OF HONG KONG

COMP4801 FINAL REPORT

Fixed-Price Mechanisms in

Bilateral Trade

Research on Algorithm Design and Analysis

Supervisor: Student:

Prof. Huang, Zhiyi Zhang Yiran

(3035844338)

School of Computing and Data Science

Apr 2025

Abstract

This project studies social welfare maximization in bilateral trade. The model

comprises one seller, one buyer, and one indivisible item. As research shows

that no truthful mechanisms can be socially efficient, there has been extensive

work on approximating the optimal social welfare. In this project, our work is

close to two recent studies that give the best-known approximation ratio using

Fixed-Price Mechanisms. We follow their analysis and use more efficient and

accurate programs on the problem, and also make improvement in the analysis

of discretization error.

i

Acknowledgments

First and foremost, I would like to express my sincerest gratitude to my supervisor,

Prof. Zhiyi Huang, for his expertise and guidance throughout this project. His

valuable advice, feedback, and insights are significant in this study.

In addition, I would like to extend my heartfelt thanks to Prof. Giulio Chiribella,

for his valuable suggestions on this work.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables iv

1 Introduction 1

1.1 Background . 2

1.2 Related research . 3

1.3 Motivation and objectives . 4

1.4 Outline . 4

2 Analysis Methods 5

2.1 Characterizing the optimal price distribution for buyer distribution 5

2.1.1 Preliminaries and characterizations . 5

2.1.2 Discretization and Dynamic Programming Algorithm 7

2.2 Characterizing the optimal mechanism under full prior information 10

3 Work and Discussion: Single-Item Setting 12

3.1 Adjustments in design and implementation. 13

3.2 Alternative analysis of discretization error . 15

4 Work and Limitation: Multi-unit Setting 20

5 Conclusion 22

iii

List of Tables

3.1 Comparison of running time (s) . 14

3.2 Analysis of error bound: new / original (ratio) . 19

iv

Chapter 1

Introduction

The bilateral trade model studies that one buyer and one seller trade an indivisible

item. Research shows that no incentive-compatible, individually rational, and

budget-balanced mechanism can achieve the optimal social welfare [6]. Motivated

by this impossibility result, many researchers have been working on approximately

efficient mechanisms. The Fixed-Price Mechanism posts a price p, and trade

occurs if both agents accept this price. Two recent studies respectively show that

there exists a fixed price mechanism that guarantees 0.71 [5] and 0.72 [3] fraction

of the optimal social welfare for any buyer and seller value distributions, and

no fixed price mechanism can achieve more than 0.7381 fraction of the optimal

welfare. Generalizations of the bilateral trade model such as Multi-unit Bilateral

Trade have also been studied. [4] shows that there exists an incentive-compatible,

individually rational, and budget-balanced mechanism which achieves a (1− 1
e
)-

approximation.

The work of this project is closely related to [5]. We follow their analysis and

try to improve the efficiency and precision of the programs. And we provide

a different approach to analyze the error bound. This project also considers

generalizing this mechanism into the multi-unit setting, but currently there is no

result to describe the performance of the generalized mechanism.

1

1.1 Background

This section provides relevant background information on the Bilateral Trade

Model, Fixed-Price Mechanisms, approximation algorithms, and the Multi-unit

Bilateral Trade Model.

Bilateral Trade Model In the bilateral trade model, a seller owns an indivisible

item, and a buyer wants to purchase it. Both agents have private valuations of

the item, we denote the seller’s valuation as s and the buyer’s valuation as b. We

only know the public probability distribution (cumulative distribution functions)

from which the valuations are drawn, i.e., s ∼ FS, b ∼ FB. A socially efficient

mechanism always trades when the buyer has higher values, and never trades if

the seller has higher values.

Fixed-Price Mechanisms The Fixed-Price Mechanism posts p as the price.

Individual Rationality requires that s ≤ p ≤ b , that is, both agents accept the

price if and only if they expect non-negative payoffs. In some cases, agents may lie

about their valuations in order to gain more benefits from trade. The Fixed-Price

Mechanism is Dominant Strategy Incentive Compatible, agents have no incentive

to deviate from using the strategy of their true valuations. This mechanism is

also Strongly Budget Balanced, the payment of the buyer is fully transferred to

the seller.

Social Welfare and Approximation Ratio The social welfare is b if the trade

occurs and s otherwise. The optimal social welfare is defined as OPT(FS, FB) =

Es∼FS ,b∼FB
[b + (b− s) · 1s≤b]. The welfare of the Fixed-Price Mechanism using p

as the price is ALG(FS, FB; p) = Es∼FS ,b∼FB
[b+ (b− s) · 1s≤p≤b].

The approximation ratio describes the performance of the mechanism on the

worst-case instance:

α = min
I=(FS ,FB)

ALG(I; p)

OPT(I)

To maximize the above ratio is equivalent to maximize the welfare obtained by

2

the mechanism.

Multi-unit Bilateral Trade Model The Multi-unit Bilateral Trade Model

studies one buyer and one seller who initially holds k identical items. Both agents

have private increasing submodular valuation functions, reflecting to what extent

they value the holding of the number of units. Let vs denote the valuation function

of the seller, drawn from public GS, and let vb denote the valuation function of

the buyer, drawn from public GB. An increasing submodular valuation function

v satisfies that for any x, y ∈ [k] and x < y, v(x) < v(y), v(x) − v(x − 1) ≥

v(y)− v(y−1). This captures a common economic phenomenon that owning one

more unit is always desirable, but the marginal utility of one more unit decreases

as the held amount goes up. An instance is a pair (GS, GB, k). The mechanism

M needs to decide the number of units q transferred from the seller to the buyer

and the payment transferred from the buyer to the seller.

1.2 Related research

In 1983, Myerson and Satterthwaite [6] initiated the study on the bilateral trade

model. Their work shows that as long as the buyer and seller distributions are

continuous with positive probability densities and the value distribution intervals

overlap, no truthful mechanism can be socially efficient. Many researchers have

been working on exploring what is possible.

Some fixed-price mechanisms are efficient in approximating social welfare. The

Median Mechanism [2] sets the median of the seller’s distribution as the price.

This mechanism provides a 1
2
approximation. The Random Quantile Mechanism

[1] chooses a quantile x randomly from a certain distribution and outputs the

x-quantile of the seller distribution as the price. This mechanism is an 1 − 1
e

approximation. The Optimal Fixed Price Mechanism [5] [3] posts a price that

maximizes the welfare of the mechanism. The approximation ratio is around 0.71

and 0.72 respectively. In terms of using fixed-price mechanisms to approximate

welfare, this mechanism is the most efficient.

3

[4] is on the Multi-unit Bilateral Trade Model. They show Generalized Median

Mechanism provides a 1
2
approximation and Generalized Random Quantile Mechanism

is a 1− 1
e
approximation, preserving the ratio of the single-item setting.

1.3 Motivation and objectives

Work Related to Single-Item Fixed-Price Mechanisms Two papers [5]

[3] on Fixed-Price Mechanisms that give the best known bound of 0.71 and

0.72 both apply the method of numerically solving a program to approach the

approximation ratio, leaving a relatively small gap from the impossibility result

of 0.7381. They also state in the paper that the lower bound and the upper bound

can converge with more computational resources. In this project, the objective

is to improve the efficiency in design and implementation of programs to get a

better result following their analysis.

Work Related to Multi-unit Bilateral Trade Currently the best bound

of 1 − 1
e
is provided by the Generalized Random Quantile Mechanism [4], and

there are no hardness results. In this project, we plan to work generalizing the

mechanisms in [5] to the setting with multiple identical items, and study the

performance of the generalized mechanism on the multi-unit setting.

1.4 Outline

The remaining of this report proceeds as follows. Chapter 2 explains the flow

of analysis in two research papers [5] [3] that are close to this work. Chapter 3

discusses the work on single-item Fixed-Price Mechanisms. Chapter 4 discusses

the work on the multi-unit setting and challenges. Chapter 5 is a conclusion for

this report.

4

Chapter 2

Analysis Methods

The part of this project related to single-item Fixed-Price Mechanisms are close to

two researches [5] [3], this section briefly introduces their analysis and programs.

2.1 Characterizing the optimal price distribution

for buyer distribution

In [5], the authors consider the setting that the mechanism is given only FB.

They characterize the optimal price distribution with respect to FB, and the

mechanism posts a price p sampled from this distribution. They prove a lower

bound of 0.71 and an upper bound of 0.7381 for this mechanism. Their general

idea for proving the lower bound is introduced in this section.

2.1.1 Preliminaries and characterizations

To prove α is a lower bound, it is equivalent to show that:

min
I=(FS ,FB)

max
FP

{Ep[ALG(I; p)− α ·OPT(I)]} ≥ 0 ∀I

We write F̄B(b) = 1 − FB(b) as the complementary cumulative distribution

5

function. The above inequality can be rewritten as:

min
I=(FS ,FB)

max
FP

{Ep[Es[s+

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
· 1s≤p]]

− α · Es[s+

∫ ∞

s

F̄B(b)db]} ≥ 0 ∀I

Knowing one-sided prior information can never be better than knowing two-sided

prior information. A lower bound of the former directly implies a lower bound of

the latter. The authors consider the setting that an arbitrary FB is given, and

show the existence of a FP with respect to FB such that the inequality is satisfied

for any FS. Fix an arbitrary FB, it is sufficient and necessary to show that there

exists a price distribution FP (cumulative distribution function) such that for any

s ≥ 0:

s+ Ep∼FP
[

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
· 1s≤p]

− α ·
(
s+

∫ ∞

s

F̄B(b)db

)
≥ 0

We write fp as the probability density function. This is further equivalent to:

(1− α)s+

∫ ∞

s

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
fp(p)dp

− α

∫ ∞

s

F̄B(b)db ≥ 0 ∀s ≥ 0

fp should satisfy that (1) it has non-negative densities, (2) the above inequality

holds, and (3)
∫∞
0

fp(p)dp = 1.

Consider an optimization problem that minimizes
∫∞
0

fp(p)dp subject to constraints

(1) and (2). Suppose an f ◦
p satisfies (1) and (2), and

∫∞
0

f ◦
p (p)dp < 1, we can

always find a fp that satisfies (3) without violating (1) and (2) by adding positive

densities at fp(0). But if
∫∞
0

f ◦
p (p)dp > 1, then there is no way to find a feasible

fp.

6

Therefore, to prove α is a lower bound is equivalent to show that
∫∞
0

fp(p)dp ≤ 1.

Notice that (1−α)s is strictly increasing in s, and α
∫∞
s

F̄B(b)db is non-increasing

in s. There exists a unique s̄ such that:

(1− α)s̄ = α

∫ ∞

s̄

F̄B(b)db

For any s ≥ s̄, (2) is satisfied naturally.

The optimal price distribution f ∗
p that achieves the minimum of

∫∞
0

fp(p)dp

should satisfy that:

(1− α)s+

∫ ∞

s

(∫ ∞

p

F̄B(b)db+ F̄B(p) · (p− s)

)
f ∗
p (p)dp

− α

∫ ∞

s

F̄B(b)db = 0 ∀0 ≤ s ≤ s̄

f ∗
p (s) = 0 ∀s > s̄

This means, for any 0 ≤ s ≤ s̄,

f ∗
P (s) = α ·

(
F̄B(s)∫∞

s
F̄B(b)db

−
∫ s̄

s
F̄B(b)

2db(∫∞
s

F̄B(b)db
)2
)

+ (1− α) ·
∫∞
s̄

F̄B(b)db(∫∞
s

F̄B(b)db
)2

Without loss of generality, assume s̄ = 1. We then have
∫∞
1

F̄B(b)db =
1−α
1−α

.1 To

prove α is a lower bound is equivalent to showing
∫ 1

0
f ∗
p (s)ds ≤ 1.

f ∗
P is represented by α and functions of F̄B. It is difficult to find the anti-derivative

and calculate
∫ 1

0
f ∗
p (s)ds directly, the idea is to use discretization and verify the

inequality for all non-increasing step functions F̄B in domain [0, 1].

2.1.2 Discretization and Dynamic Programming Algorithm

The step function F̄B may decrease at any point in {0, 1
n
, 2
n
, · · · , 1}, and it is

restricted to take values from {0, 1
n
, 2
n
, · · · , 1}. We use F̄ ∗

B to denote the function

1This would require F̄B(1) > 0, but we can allow F̄B(1) to be 0 by considering the extreme
case that there is a value 1 + 1−α

αϵ with probability ϵ for an extremely small ϵ > 0.

7

before discretization. On grid points, round it down to the largest feasible value:

F̄B(
i

n
) = ⌊F̄ ∗

B(
i

n
) · n⌋ · 1

n

For any s ∈ (i−1
n
, i
n
), extend the value of F̄B(

i
n
):

F̄B(s) = F̄B(
i

n
)

F̄B(s)
2 is obtained by taking the square of F̄B(s). We can get

∫ 1

s
F̄B(b)db and∫ 1

s
F̄B(b)

2db directly by their geometric meanings. For any s ∈ (i−1
n
, i
n
]:

∫ 1

s

F̄B(b)db = (
i

n
− s) · F̄B(

i

n
) +

n∑
j=i+1

F̄B(
j

n
) · 1

n

∫ 1

s

F̄B(b)
2db = (

i

n
− s) · F̄B(

i

n
)2 +

n∑
j=i+1

F̄B(
j

n
)2 · 1

n

Notice that after discretization, F̄B(s) can take values from {0, 1
n
, 2
n
, · · · , 1},∫ 1

s
F̄B(b)db can take values from {0, 1

n2 ,
2
n2 , · · · , 1}, and

∫ 1

s
F̄B(b)

2db can take

values from {0, 1
n3 ,

2
n3 , · · · , 1}.

The authors use a Dynamic Programming algorithm to search for the F̄B(s) that

achieves the maximum of
∫ 1

0
f ∗
p (s)ds. We first note that:

∫ 1

0

f ∗
p (s)ds =

n−1∑
0

∫ (i+1)/n

i/n

f ∗
p (s)ds

Using the discretized F̄B(s),
∫ 1

s
F̄B(b)db and

∫ 1

s
F̄B(b)

2db, we have:

∫ (i+1)/n

i/n

f ∗
p (s)ds =

α
(
F̄B(

i+1
n
)
∫ 1

(i+1)/n
F̄B(b)db−

∫ 1

(i+1)/n
F̄B(b)

2db
)
+ (1− α)2/α∫ 1

(i+1)/n
F̄B(b)db

(
F̄B(

i+1
n
)
∫ 1

(i+1)/n
F̄B(b)db+

1
n
F̄B(

i+1
n
)
) · 1

n

∫ (i+1)/n

i/n
f ∗
p (s)ds can be represented by α and values that are multiples of 1

n
, 1

n2

and 1
n3 .

8

We use Solk(x, y, z) to denote the objective value of the problem:

max

∫ k/n

0

f ∗
p (s)ds

s.t. x = F̄B(
k

n
)

y =

∫ 1

k/n

F̄B(b)db

z =

∫ 1

k/n

F̄B(b)
2db

The original Dynamic Programming algorithm is presented as follows:

1. Initialize Sol0 by a (n+ 1)× (n2 + 1)× (n3 + 1) 3d-array of zeros

2. for k in range [0, n− 1]:

3. Initialize Solk+1 by a (n+ 1)× (n2 + 1)× (n3 + 1) 3d-array of zeros

4. for each cell in Solk:

5. if x, y, z form a valid case:

6. for x′ ≤ x:

7. y′ = y − x′/n

8. z′ = z − x′2/n

9. if y′, z′ ≥ 0:

10. if Solk(x, y, z) +
∫ (i+1)/n

i/n
f ∗
p (s)ds > Solk+1(x

′, y′, z′):

11. Solk+1(x
′, y′, z′) = Solk(x, y, z) +

∫ (i+1)/n

i/n
f ∗
p (s)ds

It remains to find the largest value in the array in the last round, we denote this

value as maxFP . The values x, y, z can take are restricted, and they form a valid

case if it holds that (1− s)
∫ 1

s
F̄B(b)

2db ≥
(∫ 1

s
F̄B(b)db

)2
and F̄B(s)

∫ 1

s
F̄B(b)db ≥∫ 1

s
F̄B(b)

2db.2

We use f ∗∗
p (s) to denote the price distribution with respect to F̄ ∗

B before discretization.

2The first inequality follows from Cauchy-Schwarz Inequality. The second inequality is due

to: d
ds (F̄B(s)

∫ 1

s
F̄B(b)db) ≤ d

ds (
∫ 1

s
F̄B(b)

2db) ≤ 0, and F̄B(1)
∫ 1

1
F̄B(b)db =

∫ 1

1
F̄B(b)

2db.

9

The discretization error is analyzed as:

err =

∫ 1

0

f ∗∗
p (s)ds−

∫ 1

0

f ∗
p (s)ds ≤ αln

1− α

1− α(1 + 2/n)

To prove a lower bound of α requires maxFP + err ≤ 1.

In implementation, the authors round each
∫ 1

i
n
F̄B(b)

2db down to multiples of 1
n2 .

They implement the algorithm in Python 3.9, take α = 0.71, n = 75, they prove

that 0.71 is a lower bound.

2.2 Characterizing the optimal mechanism under

full prior information

In [3], the authors characterize the optimal Fixed-Price Mechanism for any I =

(FB, FS). They prove a lower bound of 0.72 and an upper bound of 0.7381. This

section introduces the program in their proof.

The mechanism posts a price p that maximizes the social welfare in expectation:

p ∈ argmax
p

Ep[ALG(I; p)]

OPT(I)

As the instances can be scaled, we can assume without loss of generality that

OPT(I) = 1. The following program is used to capture the worst-case instance

for the mechanism:

min
α,FB ,FS

α

s.t. OPT(I) :=

∫ ∞

0

∫ ∞

0

max{s, b}dFB(b)dFS(s) ≥ 1

ALG(I; p) :=

∫ ∞

0

sdFS(s) +

∫ p

0

∫ ∞

p

(b− s)dFB(b)dFS(s) ≤ α ∀p

10

The solution α is the tight ratio that can be achieved by the optimal Fixed-Price

Mechanism on the worst-case instance FB, FS in the solution set.

But this program cannot be solved directly as it has infinite dimensions, the

authors discretize the support and restrict the mechanism to choose the best

price from this support. They prove that any instance can be discretized and

rounded to this finite support such that it holds discrete − OPT(I) ≥ OPT(I)

and discrete − ALG(I; p) ≤ ALG(I; p). The program with finite variables can

be solved by optimization solvers. They choose a specific support and prove an

lower bound of 0.72.

Remark In [5] and [3], the authors give two different methods to prove that the

mechanisms having access to one-sided prior information and full prior information

give the same approximation ratio. One proof idea [3] is using the Minimax

Theorem. For any fixed FB:

min
FB

max
FP

min
FS

{Ep[ALG(I; p)− α ·OPT(I)]}

= min
FB

min
FS

max
FP

{Ep[ALG(I; p)− α ·OPT(I)]}

= min
I=(FS ,FB)

max
FP

{Ep[ALG(I; p)− α ·OPT(I)]}

Ideally with unlimited computational resources, the lower bound and the upper

bound can converge, and the approximation ratio of two prior information settings

should be the same.

11

Chapter 3

Work and Discussion:

Single-Item Setting

As introduced in the previous chapter, [5] and [3] use different analysis and

programs. The program in [3] has quadratic constraints and quadratic objectives,

and is solved using an optimization solver Gurobi. The algorithms the solver use

can keep track of the best solution currently found and the bound of the optimal

solution, and we can know the gap between the current one and the optimal

one. These are not polynomial time algorithms, but there have been extensive

research on reducing the running time. The authors choose a specific support for

the program and the solver is effective in solving the problem.

The time complexity of the Dynamic Programming algorithm in [5] is O(n8). In

implementation, the authors represent
∫ 1

s
F̄B(b)

2db approximately by rounding it

down to multiples of 1
n2 to reduce the time complexity to O(n7). In this project,

we want to be more precise and to implement the algorithm more efficiently to

reduce the running time. This section introduces our work in improving the

efficiency in implementation and design.

12

3.1 Adjustments in design and implementation

The authors implement the algorithm using Python, and the values in the 3d-

array are stored as double, which keeps 16 decimal places. We change the

programming language and data type to reduce the running time. For n = 35,

the algorithm in [5] run for one hour, by directly switching from Python to Java

and from double to float (keeps 8 decimal places), the running time is reduced to

8 seconds.

Another adjustment is to reverse the update order. Similarly, we use Soli(x, y, z)

to denote the objective value of the problem:

max

∫ 1

i
n

f ∗
p (s)ds

s.t. x = F̄B(s) s ∈ (
i

n
,
i+ 1

n
)

y =

∫ 1

i
n

F̄B(b)db

z =

∫ 1

i
n

F̄B(b)
2db

i is in the set {0, 1, · · · , n − 1}. Soli stores values of
∫ 1

i
n
f ∗
p (s)ds with respect to

different x, y, z. The advantage of this adjustment is to make use of the constraints

for s ∈ (1− 1
n
, 1]:

F̄B(s) ∈ {0, 1
n
,
2

n
, · · · , 1}∫ 1

1−1/n

F̄B(b)db = F̄B(s)×
1

n∫ 1

1−1/n

F̄B(b)
2db = F̄B(s)

2 × 1

n

In each round, the objective is updated from maximizing
∫ 1

i
n
f ∗
p (s)ds to maximizing

13

∫ 1
i−1
n

f ∗
p (s)ds. We have the following dependency:

x′ = F̄B(s) ≥ x s ∈ (
i− 1

n
,
i

n
)

y′ =

∫ 1

i−1
n

F̄B(b)db = y + x′ × 1

n

z′ =

∫ 1

i−1
n

F̄B(b)
2db = z + (x′)2 × 1

n

The structure follows the Dynamic Programming algorithm in [5]. In round n,

we have Sol0 that stores the maximum objective values of
∫ 1

0
f ∗
p (s)ds. It remains

to find the largest value in Sol0, we denote it as maxFP .

As x can only take values that are multiples of 1
n
and x ∈ [0, 1], we can know all

value combinations of (x, y, z) in calculating
∫ 1

1−1/n
f ∗
p (s)ds. One implementation

idea is to use (x, y, z) as the key and Soli(x, y, z) as the value, and Soli stores

the (key, value) pairs. Efficient data structures for this implementation include

unordered map in C++, HashMap in Java, and dictionary in Python. But these

implementations do not directly support multi-threading.

Another implementation is following the authors’ design and using the 3d-array,

which allows multi-threading for speeding up. Note that it always holds:

∫ i+1
n

i
n

f ∗
p (s)ds ≥ 0

The values in the array that are modified to be non-zero have valid combinations

of (x, y, z) as indices. But in terms of memory use, array is not as efficient.

To increase the precision, we allow
∫ 1

s
F̄B(b)

2db to take multiples of 1
n3 . A

comparison of running time of different implementations is as follows:

Implementation n=23 n=24 n=25 n=27 n=29

Array original 21 31
Array reversed 16 23
HashMap 6 9 12 26 50

Table 3.1: Comparison of running time (s)

14

As we use a higher precision to represent
∫ 1

s
F̄B(b)

2db, we notice that main

memory space can be a limitation. For n ≥ 25, there is not enough space in

heap memory for array implementation.

This method relies on the discretization of FB, the discretization error is analyzed

as err ≤ αln 1−α
1−α(1+2/n)

. Our goal is to make suremaxFP+err ≤ 1. Reducing err

to 0.05 requires n = 72, and err ≈ 0.03 requires n = 125. Directly representing∫ 1

s
F̄B(b)

2db exactly leads to the excessive need for main memory space.

We then use a more accurate way to round
∫ 1

s
F̄B(b)

2db down such that the

memory is used more efficiently:

v = max{
∫ 1

s
F̄B(b)

2db

1/n3
/n, 1}

rounded(

∫ 1

s

F̄B(b)
2db) = ⌊

∫ 1

s
F̄B(b)

2db

1/n3
/v⌋ × v

3.2 Alternative analysis of discretization error

Reducing the error bound can also help to prove a better result as we can increase

the lower bound α in the program. In [5], the authors work out the error bound

err which is valid for all step functions. Another option is to work out an error

bound for each step function F̄B, and verify
∫ 1

0
f ∗
p (s) + err(F̄B) ≤ 1 for each F̄B.

As we can use more parameters from each F̄B, experiment results show that the

error bound can be reduced to around 60%− 65% of the original.

In this section, let F̄ ∗
B denote the buyer distribution before discretization, and let

F̄B denote the step function after discretization.

We first show that for s ∈ (i
n
, i+1

n
),

∫ ∞

s

F̄ ∗
B(b)db−

∫ ∞

s

F̄B(b)db ≤
1

n
+

n− i

n2

Proof. We directly have
∫∞
s

F̄ ∗
B(b)db−

∫∞
s

F̄B(b)db ≤
∫∞

i
n

F̄ ∗
B(b)db−

∫∞
i
n

F̄B(b)db.

It remains to show
∫∞

i
n

F̄ ∗
B(b)db−

∫∞
i
n

F̄B(b)db ≤ 1
n
+ n−i

n2 .

15

Consider rounding F̄ ∗
B(s) up and construct another rounded step function ̂̄FB(s).

On grid points, round up to the smallest multiple of 1
n
:

̂̄FB(
i

n
) = ⌈F̄ ∗

B(
i

n
) · n⌉ · 1

n
∀i ∈ {0, 1, · · · , n− 1}

For s ∈ (i
n
, i+1

n
), extend the value of F̄B(

i
n
):

̂̄FB(s) =
̂̄FB(

i

n
) ∀s ∈ (

i

n
,
i+ 1

n
)

We have
∫∞

i
n

̂̄FB(b)db−
∫∞

i
n

F̄B(b)db ≤ 1
n
+ n−i

n2 :

∫ ∞

i
n

̂̄FB(b)db−
∫ ∞

i
n

F̄B(b)db =

∫ 1

i
n

̂̄FB(b)db−
∫ 1

i
n

F̄B(b)db

=
n−1∑
j=i

1

n
·
(̂̄FB(

j

n
)− F̄B(

j + 1

n
)

)

=
n−1∑
j=i

1

n
·
((̂̄FB(

j

n
)− ̂̄FB(

j + 1

n
)

)
+

(̂̄FB(
j + 1

n
)− F̄B(

j + 1

n
)

))
≤ 1

n
·
(̂̄FB(

i

n
)− ̂̄FB(1)

)
+ (n− i) · 1

n2

≤ 1

n
+

n− i

n2

Next, we analyze the error bound. Let obj(F̄ ∗
B) denote the objective value of∫ 1

0
f ∗
p (s)ds before rounding, and let obj(F̄B) denote the objective value after

rounding. Also, in implementation, we round
∫ 1

s
F̄B(b)

2db down, denote the

16

rounded function by K(s). For the discretization error, we have:

obj(F̄ ∗
B)− obj(F̄B) = α

∫ 1

0

(
F̄ ∗
B(s)∫∞

s
F̄ ∗
B(b)db

− F̄B(s)∫∞
s

F̄B(b)db

)
ds (γ1)

+α

∫ 1

0

(
K(s)

(
∫∞
s

F̄B(b)db)2
−

∫ 1

s
F̄ ∗
B(b)

2db

(
∫∞
s

F̄ ∗
B(b)db)

2

)
ds (γ2)

+
(1− α)2

α

∫ 1

0

(
1

(
∫∞
s

F̄ ∗
B(b)db)

2
− 1

(
∫∞
s

F̄B(b)db)2

)
ds (γ3)

For γ1, follow the analysis in [5]:

γ1 = α

(
ln(

∫ ∞

0

F̄ ∗
B(b)db)− ln(

∫ ∞

0

F̄B(b)db)

)
≤ α

(
ln(

∫ ∞

0

F̄B(b)db+
2

n
)− ln(

∫ ∞

0

F̄B(b)db)

)

For γ2 + γ3, consider the summation of smaller intervals:

γ2 + γ3 =
i=n−1∑
i=0

∫ i+1
n

i
n

e(s)ds

For any subinterval, use a similar analysis to [5]:

∫ i+1
n

i
n

e(s)ds = α

∫ i+1
n

i
n

(
K(s)

(
∫∞
s

F̄B(b)db)2
−

∫ 1

s
F̄ ∗
B(b)

2db

(
∫∞
s

F̄ ∗
B(b)db)

2

)
ds

− (1− α)2

α

∫ i+1
n

i
n

(
1

(
∫∞
s

F̄B(b)db)2
− 1

(
∫∞
s

F̄ ∗
B(b)db)

2

)
ds

≤ α

∫ i+1
n

i
n

K(s)

(
1

(
∫∞
s

F̄B(b)db)2
− 1

(
∫∞
s

F̄ ∗
B(b)db)

2

)
ds

− (1− α)2

α

∫ i+1
n

i
n

K(s)

(
1

(
∫∞
s

F̄B(b)db)2
− 1

(
∫∞
s

F̄ ∗
B(b)db)

2

)
ds

= (α− (1− α)2

α
)

∫ i+1
n

i
n

K(s)

(
1

(
∫∞
s

F̄B(b)db)2
− 1

(
∫∞
s

F̄ ∗
B(b)db)

2

)
ds

≤ (α− (1− α)2

α
)

∫ i+1
n

i
n

(

∫ 1

s

F̄B(b)
2db)

(
1

(
∫∞
s

F̄B(b)db)2
− 1

(
∫∞
s

F̄ ∗
B(b)db)

2

)
ds

≤ (α− (1− α)2

α
)

∫ i+1
n

i
n

(F̄B(s)

∫ 1

s

F̄B(b)db)

(
1

(
∫∞
s

F̄B(b)db)2
− 1

(
∫∞
s

F̄B(b)db+
2n−i
n2)2

)
ds

17

The first inequality is due toK(s) ≤
∫ 1

s
F̄ ∗
B(b)

2db, 0 ≤ K(s) ≤ 1, and
∫∞
s

F̄B(b)db ≤∫∞
s

F̄ ∗
B(b)db. The last two inequalities are due toK(s) ≤

∫ 1

s
F̄B(b)

2db ≤ F̄B(s)
∫ 1

s
F̄B(b)db,

and
∫∞
s

F̄ ∗
B(b)db ≤

∫∞
s

F̄B(b)db+
2n−i
n2 . Next apply integration by substitution.

Let x :=
∫ 1

s
F̄B(b)db, and a := 1−α

α
+ 2n−i

n2 , we have:

∫ i+1
n

i
n

e(s)ds ≤ (α− (1− α)2

α
)

∫ ∫ 1
i
n
F̄B(b)db

∫ 1
i+1
n

F̄B(b)db

(
x

(x+ 1−α
α

)2
− x

(x+ a)2

)
dx

= (α− (1− α)2

α
)

(
ln(x+

1− α

α
) +

1−α
α

x+ 1−α
α

− ln(x+ a)− a

x+ a

) ∣∣∣∣∣
∫ 1

i
n
F̄B(b)db

∫ 1
i+1
n

F̄B(b)db

= (α− (1− α)2

α
)

(
ln(

∫ ∞

i
n

F̄B(b)db) +
1−α
α∫∞

i
n

F̄B(b)db
− ln(

∫ ∞

i
n

F̄B(b)db+
2n− i

n2
)

−
1−α
α

+ 2n−i
n2∫∞

i
n

F̄B(b)db+
2n−i
n2

− ln(

∫ ∞

i+1
n

F̄B(b)db)−
1−α
α∫∞

i+1
n
F̄B(b)db

+ ln(

∫ ∞

i+1
n

F̄B(b)db+
2n− i

n2
) +

1−α
α

+ 2n−i
n2∫∞

i+1
n
F̄B(b)db+

2n−i
n2

)

We can see that
∫ i+1

n
i
n

e(s)ds can be expressed by parameters {i,
∫ 1

i
n
F̄B(b)db, F̄B(s)(s ∈

(i
n
, i+1

n
))}. The error bound can be calculated during the calculation of

∫
f ∗
p (s)ds.

We can adjust the Dynamic Programming algorithm framework to also calculate

the error bound.

Use Soli(x, y, z) to denote the objective value of the problem:

max

∫ 1

i
n

f ∗
p (s)ds+

∫ 1

i+1
n

e(s)ds

s.t. x = F̄B(s) s ∈ (
i

n
,
i+ 1

n
)

y =

∫ 1

i
n

F̄B(b)db

z =

∫ 1

i
n

F̄B(b)
2db

Soli represents the solution set that stores a number of cells, each with indices

(x, y, z) and storing the objective value Soli(x, y, z).

18

The adjusted algorithm works as follows. In the first round, calculate
∫ 1

n−1
n

f ∗
p (s)ds.

From round 2 to round n, add
∫
e(s)ds to

∫
f ∗
p (s)ds during the calculation.

In updating the objective from maximizing (
∫ 1

i
n
f ∗
p (s)ds+

∫ 1
i+1
n
e(s)ds) to maximizing

(
∫ 1

i−1
n

f ∗
p (s)ds+

∫ 1
i
n
e(s)ds):

1.Initialize Soli−1

2.for each cell in Soli :

3. Sol
′

i(x, y, z) = Soli(x, y, z) +

∫ i+1
n

i
n

e(s)ds

4. for x′ ≥ x :

5. update y′, z′

6. if Sol
′

i(x, y, z) +

∫ i
n

i−1
n

f ∗
p (s)ds > Soli−1(x

′, y′, z′) :

7. Soli−1(x
′, y′, z′) = Sol

′

i(x, y, z) +

∫ i
n

i−1
n

f ∗
p (s)ds

After round n, for each cell in Sol0, add
∫ 1

n

0
e(s)ds and γ1. It remains to find the

largest value maxFP e in Sol0 and verify that this value ≤ 1. (A limitation of

this analysis is around 30% longer running time.)

We measure the new error bound obtained in this way as maxFP e −maxFP ,

and compare with the original error bound err. Some experiment results show

that this method can reduce the error bound to 60%− 65% of the original value:

n α = 0.7 α = 0.71 α = 0.72

35 0.6144 0.6106 0.6067
40 0.6237 0.6206 0.6175
45 0.6304 0.6272 0.6245

Table 3.2: Analysis of error bound: new / original (ratio)

19

Chapter 4

Work and Limitation: Multi-unit

Setting

This project also considers bilateral trade with multiple identical items. [4]

proposes the Multi-unit Fixed Price Mechanism. The mechanism picks a fixed

unit price p and iteratively offers p to the seller and buyer to trade one more

unit until one of the agents rejects. They also show that choosing p from the

Generalized Random Quantile Mechanism can achieve a 1 − 1
e
fraction of the

optimal welfare, preserving the ratio for the Random Quantile Mechanism in the

single-item setting.1 Now we know mechanisms that give better lower bounds

for the one-item case, and we want to know their performance in a generalized

multi-unit case.

This project tries to generalize the single-item Fixed-Price Mechanism in [5]. We

consider that only GB is given, and show the existence of a price distribution f̃p

with respect to GB such that for any GS, the mechanism can guarantee α fraction

of the optimal welfare. The unit-price p is sampled from the price distribution

f̃p.

1The single-item Random Quantile Mechanism works as follows: 1. Draw a number x
in interval [1e , 1] from the cumulative distribution function ln(ex) for x ∈ [1/e, 1]. 2. Find
FS(q(x)) = x, set the price as q(x). The Generalized Random Quantile Mechanism generalizes
this mechanism into the multi-unit setting.

20

To give an analysis of the lower bound or upper bound of the generalized mechanism

requires the characterization of f̃p. But currently this project does not find useful

characterizations of f̃p for analysis, which is a limitation of this study.

21

Chapter 5

Conclusion

To conclude, the first part of this project is on Fixed-Price Mechanisms. Following

the analysis in [5], we implement the Dynamic Programming algorithm more

efficiently in terms of running time and memory use, and make improvement in

the analysis of the error bound.

The second part of the work is on generalizing the Fixed-Price Mechanism into

the multi-unit setting, but this study does not give bounds on the performance

of the generalized mechanism.

22

References

[1] Liad Blumrosen and Shahar Dobzinski. “(Almost) efficient mechanisms for

bilateral trading”. In: Games and Economic Behavior (2021), pp. 369–383.

[2] Liad Blumrosen and Shahar Dobzinski. “Reallocation mechanisms”. In: Proc.

15th ACM Conference on Economics and Computation (EC) (2014), pp. 617–

617.

[3] Yang Cai and JinzhaoWu. “On the optimal fixed-price mechanism in bilateral

trade”. In: Proceedings of the 55th Annual ACM Symposium on Theory of

Computing (STOC) (2023), pp. 737–750.

[4] Matthias Gerstgrasser et al. “Multi-Unit Bilateral Trade”. In: Proceedings of

the AAAI Conference on Artificial Intelligence (2019), pp. 1973–1980.

[5] Zhengyang Liu, Zeyu Ren, and Zihe Wang. “Improved approximation ratios

of fixed-price mechanisms in bilateral trades”. In: Proceedings of the 55th

Annual ACM Symposium on Theory of Computing (STOC) (2023), pp. 751–

760.

[6] Roger B. Myerson and Mark A. Satterthwaite. “Efficient mechanisms for

bilateral trading”. In: Journal of Economic Theory 29.2 (1983), pp. 265–

281.

23

	Abstract
	Acknowledgments
	Contents
	List of Tables
	Introduction
	Background
	Related research
	Motivation and objectives
	Outline

	Analysis Methods
	Characterizing the optimal price distribution for buyer distribution
	Preliminaries and characterizations
	Discretization and Dynamic Programming Algorithm

	Characterizing the optimal mechanism under full prior information

	Work and Discussion: Single-Item Setting
	Adjustments in design and implementation
	Alternative analysis of discretization error

	Work and Limitation: Multi-unit Setting
	Conclusion

