Schedules

Stage Objective Deadline Remark Progress 
Sem 1 
Project Setup (4 Weeks) Feasibility Assessment  9/22 Identify the possible data source. Identify APIs to collect market data and news. Identify languages and tech stacks applied. Completed 
Environment Setup 10/1 Select programming languages and tools  Setup development environment and necessary libraries Completed  
Project Website Creation 10/1 Updated with Each Milestone Completed  
Detailed Project Plan 10/1  Completed  
Preliminary Study     (5 Weeks) Milestone1:  Preliminary Research Summary 10/31 Milestone Deliverable: Preliminary Study Summary (Will be updated on Webpage) On Progress 
* Simultaneous work on Data Manipulation & ML implementation  
Dataset Manipulation (8 Weeks) Data Collection/Prepare Dataset 12/31 Collect historical cryptocurrency market data. Collect news articles and social media posts related to cryptocurrencies. Find dataset with cryptocurrency market data and news  
Data preprocessing/cleaning 12/31 Brainstorm as many features as possible Generate some features by LLM Cleaning, normalization, and structuring for future analysis.  
ML Implementation (8 Weeks) Train models using both historical market indicators and news 12/31 Choose appropriate machine learning models based on preliminary study. Split data into training, validation, and test sets.  
Milestone 2: Pave the path for research 12/31 Ensure models can be trained with limited data and limited features  
Sem 2 
Midterm Wrap-up (3 weeks) First Presentation 1/13 Midterm Paperwork No workload allocated in winter holiday  
Interim Report 1/26 
* Simultaneous work on ML Model Reinforcement and Testing & UI Implementation 
ML Model Reinforcement and Testing (8 Weeks)  Feature Selection & Models Comparison  Try different feature groups and find the most relation features Try different combinations of tested and predicted time and find the model with the best combination   
Reinforce Models   Implement advanced techniques like cross-validation to avoid overfitting. (To be confirmed by the assessment result) Iterative work on feature selection, hyperparameter tuning and validation to optimize performance.  
Milestone 3: Finalize ML Model 3/17 Milestone Deliverable: Predictive models which are well developed and evaluated  
UI Implementation (8 Weeks)  Frontend Development  Design UI and Implement the frontend with React  
Integration with ML models  Connect the frontend with the machine learning model through a backend in Django / Flask  
Milestone 4: Finish all coding deliverables 3/17 Milestone Deliverable: A functional UI developed and integrated with the models.  
Final Wrap-Up  (5 Weeks) Final Individual Report 4/21 Final Paperwork Another extra report focusing on the project details should be written by the group  
Final Presentation 4/21 
Final Project Website 4/30 
Final Report 5/30