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Abstract
The growing complexity of programming languages and codebases necessitates a
certain extent of access control within the code. This project involves the develop-
ment of the ENVCAP programming language, which models capabilities as first-
class modules, addressing the challenges of access control in software systems
with additional expressiveness and flexibility of first-class environments. EN-
VCAP is designed and implemented with a type-directed elaboration to the λE .
Currently, it supports essential programming constructs, e.g. conditional state-
ments, recursion, and first-class functions. In summary, this report provides an
overview of the project and discusses the progress.
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1 Introduction
The implementation of programming languages often relies on environments and
closures, which can diverge from the theoretical foundations of lambda calculus,
primarily based on a substitution model. This divergence creates a growing gap
between theory and practice, complicating the reasoning about the semantics of
programming languages.

To address this, a call-by-value statically typed calculus, denoted as λE , has been
proposed by Tan and Oliveira [1]. This calculus introduces the concept of first-
class environments and employs de Bruijn indices with environment lookups to
circumvent the binding issues typically associated with conventional substitution
models.

This project leverages λE as the foundational calculus for the design and imple-
mentation of the ENVCAP programming language. It aims to showcase the ex-
pressiveness of the λE calculus by modeling capabilities as first-class modules.

1.1 Capabilities
Inmany programming languages, the absence of robust access controlmechanisms
often leads to significant security vulnerabilities, particularly as codebases expand.
Unrestricted access to critical resources, such as file systems or network interfaces,
can result in insecure or poorly designed code that exposes sensitive components
to exploitation. A promising approach to addressing this issue is the integration of
capabilities into programming languages. Capabilities provide fine-grained access
control to system resources and modules, ensuring that each component operates
with the minimal privileges necessary. This aligns with the Principle of Least Au-
thority [2], which restricts access to only what is necessary for functionality. For
example, module A can interact with module B or access the file system only if
it possesses the appropriate capabilities, thereby minimizing unnecessary expo-
sure to sensitive resources. Several programming languages use capabilities as
an access-control mechanism. Existing research has focused on languages that
incorporate capabilities, such as Wyvern [3] and Pony [4].

Traditionally, capabilities are modeled as objects that encapsulate both data and
behavior, making the implementation complex and tedious. However, recent ad-
vancements in programming language theory, such as the λE calculus, propose
an alternative: first-class modules as a means of modeling capabilities [1]. This
approach not only enhances security with access control but also increases the
expressiveness of the programming language.
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1.2 First-ClassModules
The term ”first-class” refers to entities that can be dynamically created, passed
as arguments, returned from functions, and manipulated at runtime. This concept
enhances modularity, expressiveness, and flexibility in programming, enabling
developers to design systems with fine-grained control over resource access and
behavior.

Many modern programming languages support first-class classes [5], including
Python [6], JavaScript [7], and Racket [8]. These languages allow classes to be
treated as first-class entities, meaning they can be created dynamically, passed as
arguments, or returned from functions. This capability is particularly useful for
implementing advanced features such as mixins, traits, and dynamic dispatch.

To illustrate the concept of first-class modules, consider the following example in
OCaml [9]:

1 (* Define a module type *)
2 module type Show = sig
3 val show : int
4 end;;

5 (* Creating a module *)
6 module Three : Show = struct let show = 3 end;;

7 (* Unpacking a module and storing it is a first-class expression *)
8 let three = (module Three : Show);;

9 (* A list with module three and an anonymous module *)
10 let modules = [three; (module struct let show = 4 end)];;

11 (* Now, we take the anonymous module and unpack it into a normal
module *)

12 module Four = (val (List.nth modules 1) : Show);;

13 (* Result: 4 *)
14 Four.show

A module type Show is defined, and an ordinary module Three is created of type
Show. The module can be packed into a first-class module and stored in a list
with an anonymous module. This demonstrates the expressiveness of first-class
modules and showcases the dynamic creation and manipulation of modules at run-
time.
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1.3 Outline and contributions
This project explores the utility of first-class environments by modeling capabili-
ties as first-classmodules. We introduce a new programming language, ENVCAP,
whose operational semantics are defined via type-directed elaboration into the λE

calculus. The key contributions of this interim report are as follows:

• Extension of the λE Calculus: λE is extended with additional types, re-
cursion, control structures, and algebraic data types. This report provides
extended big-step operational semantics and bidirectional typing rules.

• Design of ENVCAP: The syntax and module system of ENVCAP are pre-
sented, along with its type-directed elaboration rules into the λE calculus.
This design enables the modeling of capabilities as first-class modules.

• Implementation in Haskell: An interpreter implementation of ENVCAP
is provided in Haskell, validated through unit- and property-based testing.
Case studies demonstrating the implementation of factorial and Fibonacci
are included to illustrate the language’s features and capabilities.
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2 Methodology
This section outlines the systematic approach taken in the design, implementation,
and testing of the ENVCAP programming language. The methodology consists of
two primary components: Design and Implementation (Section 2.1), and Testing
and Correctness (Section 2.2).

2.1 Design and Implementation
The design of ENVCAP’s syntax is guided by two key features: first-class mod-
ules and expressiveness. A programming language must be expressive enough to
allow developers to achieve their desired functionality, while also ensuring that
the module system demonstrates the research goal of this projecty. This program-
ming language is mainly a research prototype and hence, the primary design goal
is to show case utility of first-class environments and modules.

There are two primary approaches to implementing a programming language: us-
ing an interpreter or a compiler. For this project, an interpreter was chosen over
a compiler. Interpreters are better suited for prototyping new languages, as they
avoid the additional complexity of code generation required by compilers. Since
ENVCAP is a prototype language, an interpreter is the most suitable choice. The
structure of an interpreter is illustrated in Figure 1.

Figure 1: Structure of an interpreter

An interpreter processes code written in ENVCAP syntax through several stages.
Initially, the code is parsed by a Parser, producing a Surface AST. If the pro-
grammer fails to adhere to ENVCAP’s syntax rules, syntax errors are generated
during this parsing phase. The AST serves as a data structure that represents the
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code’s structure. Subsequently, the Surface AST undergoes elaboration, translat-
ing it into a Core AST. This Core AST is then subjected to type checking, ensuring
compliance with the typing rules established in the λE calculus. Type errors are
raised if any violations occur. Upon successful type checking, the Core AST is
executed according to the simplification rules of Core λE calculus, and the results
are returned to the programmer.

The programming language used for the implementation of this project is Haskell.
Haskell is a purely functional language, making it an excellent choice for research
projects where correctness and reasoning are crucial. Unlike many other lan-
guages, Haskell has no side effects, and code is written as pure functions, where
a given set of inputs always produces the same output. In addition, Haskell of-
fers features like pattern-matching, which makes it well-suited for implementing
compilers and interpreters.

The parser for the interpreter is written using a combination of the parser com-
binator library Parsec [10] and a parser generator Happy[11]. Utilizing a parser
generator helps to define the syntax and grammar in a non-ambiguous manner.
Happy generates a parser based on the EBNF grammar form and then, once the
design is finalized, the specific feature is added to the hand-written parser with
better error handling and exceptions using the Parsec library.

2.2 Testing and Correctness
Given the emphasis on correctness in this project, multiple levels of testing were
employed to ensure its reliability. While implementations typically rely on unit
testing, where programmers manually write test cases, this method may not en-
compass all possible edge cases. As such, property-based testing [12] is also uti-
lized. This technique tests the properties of the code through the automatic gener-
ation of hundreds of random test cases, scrutinizing whether the code adheres to
a specific property for each test case. Any deviation results in the production of
a counter-example for that specific property. The random generation of test cases
significantly enhances the quality of the implementation by covering a broad spec-
trum of code behavior, unlike unit testing, which is restricted by the programmer’s
ability to anticipate potential edge cases.

Initial testing is conducted on the code using the unit testing approach to ensure
comprehensive coverage. This method allows for the early detection of basic er-
rors, an advantage given the potentially time-consuming nature of property-based
testing. Hspec [13] is employed to write unit tests, each of which focuses on a
specific aspect of the codebase’s functionality. The aim is to create sufficient unit
tests to guarantee complete coverage, thus effectively testing the entire codebase.
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Figure 2: Coverage report generated by Hspec

As demonstrated in Figure 2, Hspec generates a coverage report detailing the per-
centage of code tested with unit tests. Complete coverage will display 100% for all
modules in the coverage report. In addition, Figure 3 highlights any untested code
to guide further unit testing. Upon achieving complete code coverage, property-
based testing is undertaken using another Haskell package, Quickcheck [14].

Figure 3: Highlighted areas indicate untested code segments.
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3 Progress
Below is an overview of the progress made so far. The design of the language is
almost complete, except the Module system is in the process of design and im-
plementation. Firstly, we go through the extensions to the core calculus followed
by an overview of the design and syntax of ENVCAP and some programs imple-
mented in it.

3.1 λE extensions
λE is an environment-based calculus. Essentially, it has the environments and
closures, that are commonly used in programming language implementation. The
syntax, bi-directional typing rules, and semantics of λE are provided in Appendix
A, and further details can be found in the paper A Case for First-Class Environ-
ments [1]. To achieve the usability of an intermediate programming language,
the core calculus needs to be extended with basic constructs, e.g. recursion and
conditionals, and some advanced ones, e.g. algebraic data types.

3.1.1 Base Data Types

λE currently only supports the Int type. The calculus is further extended with the
Bool and String to support booleans and strings. Below are the typing rules and
semantics for the extension.

TYP-BOOL

Γ ⊢ b : Bool

TYP-STRING

Γ ⊢ s : String

BSTEP-BOOL

v ⊢ b ⇒ b

BSTEP-STR

v ⊢ s ⇒ s

3.1.2 General Recursion

Recursion is a fundamental feature in programming languages, enabling functions
to call themselves and solve problems by breaking them into smaller subproblems.
To support recursion at the source level, the core calculus must provide a mecha-
nism for self-reference, such as the fixpoint operator (Fix). The Fix operator com-
putes the fixed point of a function f , satisfying f(Fix(f)) = Fix(f), and allows re-
cursive definitions without explicit self-reference. For example, a recursive facto-
rial function can be defined as fact = Fix(λf.λn.if n = 0 then 1 else n×f(n−1)).
While alternatives like the Y-combinator exist, Fix is often preferred for its sim-
plicity and explicitness, making it a practical choice for implementing recursion
in core calculi.
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BSTEP-FIX
v ⊢ λA.e1 ⇒ ⟨v1, λA.e1⟩

v ⊢ Fix λA.e1 ⇒ ⟨v1 , ⟨v1, Fix λA.e1⟩, Fix λA.e1⟩

BSTEP-FixApp
v ⊢ (Fix e1) ⇒ ⟨v1, Fix λA.e⟩ v ⊢ e2 ⇒ v2 v1 , v2 ⊢ e ⇒ v′

v ⊢ (Fix e1) e2 ⇒ v′

In λE calculus, de Bruijn indices are utilised. Hence, BSTEP-FIX loads the fix-
points closure into the environment of the resulting closure so that the function is
capable of referring to itself in a locally nameless style. Below is the typing rule
for the Fix:

TYP-FIX
Γ&A → A ⊢ e : B

Γ ⊢ Fix λA.e : B

3.1.3 Let expression and conditionals

Conditionals and let expressions are fundamental constructs in programming lan-
guages. In this project, the if conditional is directly included in the core calcu-
lus. While Church encodings could be used to represent conditionals, adding if
directly simplifies the design and allows focus on the core language features. Sim-
ilarly, let expressions could be desugared into function applications, but they are
included explicitly for clarity. These simplifications can be explored later for a
more minimalistic core calculus, but for now, both constructs are added directly.

BSTEP-IF_True
v ⊢ e1 ⇒ True v ⊢ e2 ⇒ v2

v ⊢ if e1 e2 e3 ⇒ v2

BSTEP-IF_False
v ⊢ e1 ⇒ False v ⊢ e3 ⇒ v3

v ⊢ if e1 e2 e3 ⇒ v3

BSTEP-LET
v ⊢ e1 ⇒ v1 v , v1 ⊢ e2 ⇒ v2

v ⊢ let e1 e2 ⇒ v2

Below are the typing rules:

TYP-LET
Γ ⊢ e1 : A Γ , A ⊢ e2 : B

Γ ⊢ let e1 e2 : B

TYP-IF
Γ ⊢ e1 ⇒ Bool Γ ⊢ e2 ⇒ A Γ ⊢ e3 ⇒ A

Γ ⊢ if e1 e2 e3 ⇒ A
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3.1.4 Built-in Lists

Lists in λE are implemented as a built-in type with two constructs:

• nil T: An empty list of type T.

• cons e1 e2: A list with head e1 (type T) and tail e2 (type List T).

The lcase construct enables pattern matching on lists:

• Empty List (nil T): Executes an expression for the empty case.

• Non-empty List (cons v1 v2): Executes an expression with access to the
head (v1) and tail (v2).

Typing Rules

TYP-Nil

Γ ⊢ nil T : List T

TYP-Cons
Γ ⊢ e1 : T Γ ⊢ e2 : List T
Γ ⊢ cons e1 e2 : List T

TYP-LCASE
Γ ⊢ e1 : List T1 Γ ⊢ e2 : T2 Γ , T1 , List T1 ⊢ e3 : T2

Γ ⊢ lcase e1 e2 e3 : T2

Big-Step Semantics

BSTEP-Nil

v ⊢ nil T ⇒ nil T

BSTEP-Cons
v ⊢ e1 ⇒ v1 v ⊢ e2 ⇒ v2

v ⊢ cons e1 e2 ⇒ cons v1 v2

BSTEP-LCASE_Nil
v ⊢ e1 ⇒ nil T v ⊢ e2 ⇒ v2

v ⊢ lcase e1 e2 e3 ⇒ v2

BSTEP-LCASE_Cons
v ⊢ e1 ⇒ cons v1 v2 v , v1 , v2 ⊢ e3 ⇒ v3

v ⊢ lcase e1 e2 e3 ⇒ v3

3.1.5 ADTs: Sums and Pairs

Algebraic Data Types (ADTs) in λE include sums (disjoint unions) and pairs (prod-
uct types). Pairs allow grouping two values into a single entity, while sums repre-
sent disjoint unions, enabling values of different types to coexist. The semantics
for these constructs are defined as follows:
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BSTEP-PAIR
v ⊢ e1 ⇒ v1 v ⊢ e2 ⇒ v2

v ⊢ (e1, e2) ⇒ (v1, v2)

BSTEP-Fst
v ⊢ e ⇒ (v1, v2)

v ⊢ Fst e ⇒ v1

BSTEP-Snd
v ⊢ e ⇒ (v1, v2)

v ⊢ Snd e ⇒ v2

BSTEP-Inl
v ⊢ e ⇒ v1

v ⊢ inl T e ⇒ inl T v1

BSTEP-Inr
v ⊢ e ⇒ v1

v ⊢ inr T e ⇒ inr T v1

BSTEP-CASEInl
v ⊢ e1 ⇒ inl T v1 v , v1 ⊢ e2 ⇒ v2

v ⊢ case e1 e2 e3 ⇒ v2

BSTEP-CASEInr
v ⊢ e1 ⇒ inr T v1 v , v1 ⊢ e3 ⇒ v3

v ⊢ case e1 e2 e3 ⇒ v3

Pairs are constructed using (e1, e2), with Fst and Snd for projections. These con-
structs will also be simplified with the current e.n operator supported in the core
calculus as the work on elaboration from ENVCAP to core progresses. Sums are
constructed using inl T e and inr T e, with case for pattern matching. For ex-
ample, (1,True) creates a pair, and case (inl Int 5) (...) (...) matches
on the left variant of a sum. These constructs provide a flexible and type-safe way
to model complex data structures in λE .

Sums and pairs in λE provide a flexible and type-safe way to model complex data
structures, enabling expressive programming patterns.

3.1.6 Arithmetic, Boolean, and Comparison Operators

Basic operations are added to the core level and these are mainly supported by the
corresponding operations in the Haskell itself. The typing rules and semantics are
similar to those of the application.
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3.2 ENVCAP Programming Language
The implementation structure is mainly divided into a minimalistic core calculus
and the source language. The ENVCAP syntax is parsed into a source-level AST
which then goes through the process of desugaring and elaboration. For example,
de Bruijn indices are taken care of at the source level and then, the expression
is translated to the core expression where it gets type-checked before execution.
Eventually, once the design of ENVCAP is finalized, the typing rules will also be
defined at the source level and then, type-directed elaboration will be performed to
the core calculus. If the source level is well-typed, then the core expression must
also be well-typed and both must have the same type. Below is a brief overview
of the Syntax and Design of ENVCAP is briefly reviewed followed by sample
programs that can be fully executed in the interpreter currently.

Basic Constructs

Literals

• Integers: 1, 42, -5

• Booleans: True, False

Variables

• Variable names: x, y, myVar

• Example: x, myVar

Arithmetic Operations

Operators

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: /

• Modulus: %
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Examples

1 1 + 2
2 3 * 4
3 10 / 2
4 5 % 2

Comparison Operations

Operators

• Greater than or equal: >=

• Greater than: >

• Equal: ==

• Not equal: !=

• Less than: <

• Less than or equal: <=

Examples

1 1 < 2
2 2 <= 3
3 3 > 2
4 4 >= 1
5 1 == 1
6 2 != 3

Boolean Operations

Operators

• Logical AND: &&

• Logical OR: ||

12



Examples

1 True && False
2 False True

Control Flow

If-Then-Else

1 if (condition) then { statements } else { statements }

Example:

1 if (x > 0) then { x } else { 0 }

Functions

Function Definition

1 function name(param1: Type, ... , param2: Type) { statements }

Example:

1 function add(x: Int, y: Int) { x + y }

Lambda Functions

1 \(param1: Type, param2: Type) => { statements }

Example:
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1 def add = \(x: Int, y: Int) => { x + y }

Bindings

Binding

1 def {binding-name} = {expression}

Example:

1 def x = 10

The variable bindings can not be updated as the ENVCAP does not support vari-
able updates. Hence, the language is purely functional rather than imperative (even
if the syntax looks similar to that of an imperative language).

1 def x = \(x:Int) => {x + 1}

Note: This is a valid program since the implementation adopts a locally nameless
representation.

Context

Context Query

This operator returns the current environment in the execution and allows the pro-
grammer to manipulate it and hence, first-class environments are supported.

1 ?

Example:

1 def x = 10; def y = 5; def k = ?

This code will store the environment in k.
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Statements

Multiple Statements

Multiple statements are connected via the dependent merge , operator.

1 statement1; statement2

Example:

1 def x = 1; def y = 2

Types

Basic Types

• Int: Integer type.

• Bool: Boolean type.

• String: String type.

Function Types

1 Type1 -> Type2

Example:

1 Int -> Int

Record Types

1 { fieldName: Type }

Example:
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1 { name: String, age: Int }

List Types

1 [Type]

Example:

1 [Int]

Records

Record Construction

1 { fieldName = value }

Example:

1 { name = "Alice", age = 30 }

Field Access

1 record.label

Example:

1 def x = 15;
2 def y = 20;
3 def z = ?.x
4 -- z gets value 15
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Lists

List Construction

1 [element1, ..., element2]

Example:

1 [1, 2, 3]

Pattern matching on lists

1 [element1, ..., element2]

Example:

1 function reverse (ls: [Int]) {
2 match ls of
3 [] => { [] }
4 (x:xs) => { reverse (xs) ++ [x] }
5 };
6 reverse([1, 2, 3])
7 -- result is [3, 2, 1]

Tuples

Tuple construction

1 (item1, item2, item3, ..., itemN)

Example:

1 (false, 10, true, "hello", 1001)
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Tuple is simply a generalization of the products. However, the construct can be
potentially modeled with intersections and merges.

Precedence and Associativity

Operator Precedence (from highest to lowest)

1. *, /, %

2. +, -

3. >=, >, ==, !=, <, <=

4. &&

5. ||

6. =, =>

Associativity

• Left-associative: +, -, *, /, %, &&, ||

• Right-associative: =, =>

Sample Programs
Below programs can be parsed, elaborated, type-checked and executed completely
in the current ENVCAP interpreter.

Fibonacci
The Fibonacci sequence is computed using recursion:

1 function inc(i : Int) { i + 1 };

2 function fibonacci(n: Int) {
3 if (n == 0 n == 1) then {
4 1
5 } else {
6 fibonacci(n - 1) + fibonacci(n - 2)
7 }
8 };

9 fibonacci(inc(10))

18



Factorial
The factorial of a number is computed using recursion and a lambda function:

1 def dec = \(n : Int) => { n - 1 };

2 function factorial(n: Int) {
3 if (n == 0) then {
4 1
5 } else {
6 n * factorial(dec(n))
7 }
8 };

9 factorial(5)

First-Class Functions
ENVCAP supports first-class functions, allowing functions to be passed as argu-
ments and returned as values:

1 function square(double : Int -> Int, n : Int) {
2 double(n)
3 };

4 function fancy(n : Int) {
5 \(x : Int) => { x + square(\(n: Int) => { n * 2 }, 10) }
6 };

7 def temp = fancy(10);
8 temp(20)

Another example of first-class functions:

1 ((\(call : Int -> Int, n : Int) => { call(n) })(\(n : Int) => { n +
10 }))(10)

19



Conditionals
Conditionals are used to implement a prime-checking function:

1 def n = 11;

2 function isPrime(i : Int) {
3 if (n < 2)
4 then { 0 }
5 else {
6 if ((i * i) > n)
7 then { 1 }
8 else {
9 if (n % i == 0)
10 then {
11 0
12 } else {
13 isPrime(i + 1)
14 }
15 }
16 }
17 };

18 isPrime(11) == 1
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4 Further plan
The original project schedule is outlined in Table 1. The core implementation,
including extensions, has been completed. Currently, work is underway on the
design of the module system for ENVCAP. The implementation of the interpreter
is expected to be finished by February 2025, followed by rigorous testing with
Property-Based and Unit tests by March 2025, and extensive documentation by
April 2025. The project is on track with progress; the design of the module system
is nearly complete, and the implementation of the module system is the next step.
Additionally, tooling support for the interpreter, including REPL, Pretty Printing,
and a step-wise debugger, will be added.

Milestones Expected Completion Date
Literature Review September, 2024

Core Implementation October, 2024
Extension of Core λE November, 2024

Design of ENVCAP Syntax December, 2024
Interpreter for ENVCAP January - February, 2025

Testing and Tools March, 2025
Extensive Documentation April, 2025

Table 1: Schedule

However, this project is a research prototype and there are a few research problems
that this research aims to solve. Below are the further goals that are beyond the
scope of FYP.

• Formalization of the type-directed elaboration from the ENVCAP to λE

using the Rocq Theorem Prover and proving theorems on type-safety and
uniqueness of the elaboration.

• Add separate compilation/type checking to the design of ENVCAP using
the dependent merges and intersection types. Formalize the meta-theory of
the linking process in Rocq.

• Simplify λE with generalized box constructs and formalize in Rocq Theo-
rem Prover.

• Extend λE with subtyping.

• Implement a simple online interactive playground for ENVCAPwith syntax
highlighting.
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• Create a simple VS code extension for ENVCAP syntax highlighting.

Even though the above goals are beyond the scope of FYP, the final report may
contain the results if any of the above goals are achieved.
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A Appendix A

A.1 Syntax of λE

Types A,B,Γ ::= Int | ϵ | A → B | A&B | {ℓ:A}
Expressions e ::= ? | e.n | i | ϵ | λA. e | e1 ▷ e2 | ⟨v, λA. e⟩ | e1 e2 | e1 , e2 | {ℓ=e} | e.ℓ
Values v ::= i | ϵ | ⟨v, λA. e⟩ | v1 , v2 | {ℓ=v}
Frame F ::= [ ].n | [ ] , e | [ ] e | [ ] ▷ e | v [ ] | {l = [ ]} | [ ].ℓ

A.2 Bi-directional Typing rules of λE

⇒ infer
⇐ check
ℓ : A ∈ B (Containment)
CTM-RCD

ℓ : A ∈ {ℓ : A}

CTM-ANDL
ℓ : A ∈ B ℓ /∈ label(C)

ℓ : A ∈ B & C

CTM-ANDR
ℓ : A ∈ C ℓ /∈ label(B)

ℓ : A ∈ B & C

Γ ⊢ e : A (Typing)
TYP-CTX

Γ ⊢? ⇒ Γ

TYP-PROJ
Γ ⊢ e ⇒ B lookup(B, n) = A

Γ ⊢ e.n ⇒ A

TYP-LIT

Γ ⊢ i ⇒ Int

TYP-TOP

Γ ⊢ ε ⇒ ε

TYP-Chk
Γ ⊢ e ⇒ A A = B

Γ ⊢ e ⇐ B

TYP-BOX
Γ ⊢ e1 ⇒ Γ1 Γ1 ⊢ e2 ⇒ B

Γ ⊢ e1 ▷ e2 ⇒ B

TYP-MERGE
Γ ⊢ e1 ⇒ A Γ & A ⊢ e2 ⇒ B

Γ ⊢ e1 , e2 ⇒ A & B

TYP-LAM
Γ & A ⊢ e : B

Γ ⊢ λA.e : A → B

TYP-APP
Γ ⊢ e1 ⇒ A → B Γ ⊢ e2 ⇐ A

Γ ⊢ e1 e2 ⇒ B

TYP-CLOS
Γ ⊢ v ⇒ Γ1 Γ1&A ⊢ e ⇒ B

Γ ⊢ ⟨v, λA.e⟩ ⇒ A → B

TYP-RCD
Γ ⊢ e ⇒ A

Γ ⊢ {l = e} ⇒ {l : A}

TYP-SEL
Γ ⊢ e ⇒ B l : A ∈ B

Γ ⊢ e.l ⇒ A
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A.3 Big-step operational semantics
BSTEP-CTX

v ⊢? ⇒ v

BSTEP-PROJ
v ⊢ e ⇒ v1

v ⊢ e.n ⇒ lookupv(v1, n)

BSTEP-LIT

v ⊢ i ⇒ i

BSTEP-CLOS

v ⊢ ⟨v1, λA.e⟩ ⇒ ⟨v1, λA.e⟩

BSTEP-UNIT

v ⊢ ε ⇒ ε

BSTEP-MERGE
v ⊢ e1 ⇒ v1 v , v1 ⊢ e2 ⇒ v2

v ⊢ e1 , e2 ⇒ v1 , v2

BSTEP-BOX
v ⊢ e1 ⇒ v1 v1 ⊢ e2 ⇒ v2

v ⊢ e1 ▷ e2 ⇒ v2

BSTEP-APP
v ⊢ e1 ⇒ ⟨v1, λA.e⟩ v ⊢ e2 ⇒ v2 v1 , v2 ⇒ v′

v ⊢ e1e2 ⇒ v′

BSTEP-LAM

v ⊢ λA.e ⇒ ⟨v1, λA.e⟩

BSTEP-RCD
v ⊢ e ⇒ v1

v ⊢ {l = e} ⇒ {l = v1}

BSTEP-SEL
v ⊢ e ⇒ v1 v1.l ⇝ v2

v ⊢ e.l ⇒ v2
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