Project Plan

Capabilities as First Class Modules

Jam Kabeer Ali Khan
3035918749

Supervisor: Bruno C. d. S. Oliveira
The University of Hong Kong

Department of Computer Science
BEng Computer Science

Contents

1 Introduction

2 Background

2.1 First-Class Environments
2.2 Capabilities
2.3 Case Study: Wyvern [3]

3 Objectives

4 Methodology
4.1 Literature Review
4.2 Implementationo L

4.3 Testing

5 Project Schedule

References

w NN NN

e~ o W

1 Introduction

Most common programming languages do not restrict access to system resources across
different sections of the codebase. An increase in codebase with no authority division
between its components can lead to security vulnerabilities as insecure code can exploit
system resources even if it does not require access to specific system resources to exe-
cute its tasks. For instance, a section of code adhering to weaker security standards can
compromise the entire system by exploiting resources such as the file system or network.
Capabilities provide a mechanism to restrict access to system resources, thereby adhering
to the Principle of Least Authority [4]. While capabilities are traditionally modeled as
objects, recent advancements in Ag calculus propose using first-class environments as an
alternative representation for capabilities [10]. This approach aims to bridge the gap be-
tween the implementation and theoretical aspects of programming languages, enhancing
reasoning about code. This research project will design and implement a programming
language that incorporates capabilities as first-class modules and supports separate com-
pilation, utilizing Ag as the core calculus. In this detailed plan, we will go through the
background, objectives, methodology, and timeline.

2 Background

2.1 First-Class Environments

Environments are used for the implementation of the programming languages to maintain
scope and bindings etc. These can be implemented as a dictionary or other relevant data
structures. First-Class refers to values/constructs in a programming language that can
be created and manipulated during the runtime. First-Class Environments [2| can be
modified and mainipulated during the run-time. First-class environments are adopted
by a few dynamically typed languages such as R [1]. Due to dynamic typing, these
languages are prone to runtime type errors, and therefore, it creates a need for statically
typed semantics with first-class environments. A call-by-value statically typed calculus
called A\g [10] allows for reasoning about first-class environments and provides static

typing.

2.2 Capabilities

Capabilities, as the name suggests, allow programs the capability to access other pro-
grams. Suppose we have a module that allows access to a specific system resource, then
we can allow only specific code to access this module by providing it a Capability. In
addition, Capabilities can help write secure concurrent code as it can restrict access to
specific system resources and therefore, avoid data races or deadlocks. Types can be spec-
ified for capabilities and hence, allowing to avoid non-restricted access before run-time.
Typically, capabilities are modeled as Objects which can be substituted by First-Class
Environments [10].

2.3 Case Study: Wyvern [3]

Wyvern has first-class modules and treats modules as capabilities. If module A wants
a reference to module B, it has to have the capability for module A. There are resource

and pure modules where all the modules that encapsulate system resources, use other
resource modules, or contain mutable state are considered resource modules, and the rest
are pure modules. Resource modules are security-critical modules and are written with
higher levels of security. Resource modules can only be accessed by resource modules, but
any module can access a pure module. Wyvern utilizes a Threat model which requires
secure interfaces to access resource modules and therefore, creates a distinction between
trusted and untrusted codebase. [3]

3 Objectives

This project aims to demonstrate the use of first-class environments as an alternative to
objects for modeling capabilities by design and implementation of a programming lan-
guage with capabilities as first class modules. The design of the programming language
will be followed by an interpreter or compiler implementation to realize the design. De-
sign and implementation are divided into Surface and Core, where Surface will be the
programming language used by the user and it will be translated into the core calculus
to keep it close to the theoretical foundation. This translation from Surface to Core will
be specified as an elaboration. Further, support for separate compilation will be added
to the language. Here are the main tasks involved in this project:

e Implementation of the core calculus \g.

e Extension of the Core A\ with If-Else, Recursive functions, etc.

e Utilize modular type checking to add support for separate compilation.
e Design the surface programming language with capabilities.

e Specify elaboration from the Surface to the Core.

e Implement the surface language and its translation to the core.

e Extensive documentation for the implementation.

e Unit and Property-Based testing of the implementation.

4 Methodology

4.1 Literature Review

As part of the methodology, a comprehensive literature review will be conducted to
establish a solid foundation for the project. This review will encompass an in-depth
examination of existing research related to programming languages that incorporate ca-
pabilities, e.g. Pony [8] and Wyvern [3], and calculi with environment-based semantics,
e.g. E; [9] and Ag [10]. In addition, theoretical foundations of programming languages
will be studied from Software Foundations Vol 1 [7] & II [6] and Types and Programming
Languages 5] to support research literature comprehension.

4.2 Implementation

The programming language used for implementation is Haskell. Core Calculus Ag will be
implemented first which will also require the use of bidirectional typing to implement the
type checker for the core. To support the separate compilation for the surface language
later, modular type checking will also be part of the core. Then, surface language will be
designed followed by the specification of elaboration from the surface to the core. Next,
we will implement the parser for the surface and its elaboration to the core. The surface
will be parsed into an Abstract Syntax Tree which will be further translated into an
equivalent representation in the core calculus before execution as shown in Figure 1.

Surface
Elaboration Core
Letx=1;
y=x; N 7\
E
return x;

sample.env

Figure 1

4.3 Testing

Unit and Property-based testing will be performed to ensure the correctness of the imple-
mentation. For Unit testing, tests will be written to aim for full coverage. However, we
want our implementation to have strong guarantees, and therefore, utilization of property-
based testing with QuickCheck framework in Haskell will allow us to uncover edge cases
as it generates randomized test cases to test for properties of the code. This will allow the
gap between the implementation and theoretical foundation to be minimal and therefore,
utilizing formal verification with Coq, if needed, will be more pleasant. Furthermore,
GitHub will be used for version control. Testing will be performed in parallel to the
implementation.

5 Project Schedule

Table 1: Milestones and Deadlines

Milestone

Timeline

Literature Review

Project Proposal and Web Page Setup
Core Calculus Implementation

Design of Surface Programming Language
Interim Report and Presentation
Implementation of Surface

Further Improvements

Final Report and Presentation

August to September
September

October to November
November to December
January

January to March
March to April

April

References

1]

2]

13l

4]

5]

[6]

17l

18]

19]

[10]

Olivier Fliickiger, Guido Chari, Jan Je¢men, Ming-Ho Yee, Jakob Hain, and Jan
Vitek. R melts brains: an ir for first-class environments and lazy effectful argu-
ments. In Proceedings of the 15th ACM SIGPLAN International Symposium on
Dynamic Languages, DLS 2019, page 55-66, New York, NY, USA, 2019. Association
for Computing Machinery.

D. Gelernter, S. Jagannathan, and T. London. Environments as first class objects.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 87, page 98-110, New York, NY, USA, 1987. As-
sociation for Computing Machinery.

Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. A
Capability-Based Module System for Authority Control. In Peter Miiller, editor,
31st European Conference on Object-Oriented Programming (ECOOP 2017), vol-
ume 74 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1—
20:27, Dagstuhl, Germany, 2017. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Darya Melicher, Yangqgingwei Shi, Alex Potanin, and Jonathan Aldrich. A capability-
based module system for authority control. In Peter Miiller, editor, 31st Euro-
pean Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain, volume 74 of LIPIcs, pages 20:1-20:27. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2017.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition,
2002.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi,
Michael Greenberg, Catalin Hritcu, Vilhelm Sjoberg, Andrew Tolmach, and Brent
Yorgey. Programming Language Foundations, volume 2 of Software Foundations.
Electronic textbook, 2024. Version 6.7, http://softwarefoundations.cis.upenn.edu.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi,
Michael Greenberg, Catalin Hritcu, Vilhelm Sjoberg, and Brent Yorgey. Logical
Foundations, volume 1 of Software Foundations. Electronic textbook, 2024. Version
6.7, http:/ /softwarefoundations.cis.upenn.edu.

George Steed and Sophia Drossopoulou. A principled de-
sign of capabilities in pony. URL: hittps://www. ponylang.
i0/media/papers/a_ prinicipled_ design_of capabilities in_ pony. pdf, 2016.

Jinhao Tan and Bruno C. d. S. Oliveira. Dependent Merges and First-Class Environ-
ments. In Karim Ali and Guido Salvaneschi, editors, 37th European Conference on
Object-Oriented Programming (ECOOP 2023), volume 263 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 34:1-34:32, Dagstuhl, Germany, 2023.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Jinhao Tan and Bruno C. d. S. Oliveira. A case for first-class environments (artifact),
August 2024.

	Introduction
	Background
	First-Class Environments
	Capabilities
	Case Study: Wyvern melicheretal:LIPIcs.ECOOP.2017.20

	Objectives
	Methodology
	Literature Review
	Implementation
	Testing

	Project Schedule
	References

