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1. Introduction

Thyroid cancer is the most frequent endocrine malignancy, with an incidence rate of

approximately 14.6 per 100,000 individuals in the United States, predominantly affecting

women, where it ranks as the seventh most prevalent form of cancer [1]. Consequently, there

is a growing requirement for trustworthy imaging methods to examine thyroid nodules, with

ultrasound (US) imaging being the generally used modality.

Due to the widespread use of ultrasonography, many incidental thyroid nodules are found

during unrelated examinations. However, only about 5% of thyroid nodules are proven to be

malignant [2]. In 2017, the ACR promulgated the TI-RADS system based on ultrasound,

which standardized the nodular classification and reporting of ultrasound examinations to

ensure that each nodule was classified and a definitive diagnostic suggestion was given

(biopsy, follow-up, or no intervention), improving specificity [2]. Many studies have found

that using the TI-RADS system could reduce the false negative rate of malignant nodules.

However, the consistency of judgment between different radiologists using the TI-RADS

system to classify nodules still does not meet clinical requirements, posing a significant

challenge [3]. The strong subjectivity of manual ultrasound examination and the large

number of unnecessary biopsies highlight the need for improved diagnostic tools for nodular

examination [3].

Deep learning models can mitigate the subjective factors involved in diagnosis. Machine

learning has provided valuable insights and decision support in analyzing medical images in

radiology settings [4]. Some studies have demonstrated that the diagnostic ability of deep

learning can match or surpass that of doctors [5]. However, most studies on thyroid

ultrasound using deep learning do not adequately address the need for both effective

localization and classification of nodules. This project aims to conduct a systematic model

selection process to identify the most effective algorithms for the object detection or instance

segmentation task of thyroid nodules in ultrasound images, as well as for the classification

tasks. Building on existing literature and techniques in deep learning, the project will propose
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a robust deep-learning-based pipeline that is able to localize the position of thyroid nodules

from US images, and then classify the malignant risk of nodules based on the feature

extracted from the region of interest (ROI).

2. Methodology

The proposed methodology introduces an automated thyroid nodule analysis system (Figure 1)

with two main components: nodule detection and TI-RADS classification. The detection

phase utilized YOLO11n for automatic nodule extraction, while the classification phase

employed multiple CNN models. The methodology was implemented using the Stanford

AIMI Dataset, with data preprocessing and feature extraction optimized for medical imaging

requirements.

Figure 1. Thyroid nodule detection and classification pipeline architecture overview.

2.1. Data Collection and Sources

This study primarily utilizes the Stanford AIMI Thyroid Ultrasound Cine-clip Dataset [6],

which comprises 167 patients with biopsy-confirmed thyroid nodules from Stanford

University Medical Center. The dataset contains 192 nodules captured in approximately

18,000 ultrasound frames. Additionally, through collaboration with Queen Mary Hospital,

approximately 100 de-identified scans with expert annotations will be acquired. The Stanford

AIMI shared dataset serves as the primary training source due to its comprehensive nature

and sufficient size for deep learning model training. The Queen Mary Hospital dataset will be

subsequently used for model fine-tuning to fit real-world clinical use.
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2.2. Data Analysis and Characteristics

Characteristic
Stanford AIMI Dataset

Benign Malignant
Age (y) 56.8 ± 15.2 48.3 ± 14.1
Sex - Female 144 (82.3%) 15 (88.2%)
Sex - Male 31 (17.7%) 2 (11.8%)

TI-RADS Level
1 1 (0.6%) 0 (0.0%)
2 10 (5.7%) 0 (0.0%)
3 52 (29.7%) 0 (0.0%)
4 78 (44.6%) 5 (29.4%)
5 34 (19.4%) 12 (70.6%)

Total 175 17

Table 1. Clinical characteristics of the Stanford AIMI Dataset.

Table 1 presents the clinical characteristics of the Stanford AIMI Dataset, categorizing

patients based on benign and malignant thyroid nodules. The dataset analysis reveals several

key characteristics. The mean age for benign cases (56.8 ± 15.2 years) is notably higher than

malignant cases (48.3 ± 14.1 years). Gender distribution shows a predominance of female

patients in both categories, with 82.3% (144) and 88.2% (15) in benign and malignant groups

respectively. The TI-RADS classification demonstrates a distinct pattern, with benign

nodules distributed across all levels (1-5), predominantly in levels 3 (29.7%) and 4 (44.6%).

In contrast, malignant nodules are concentrated in higher TI-RADS levels, with 70.6% at

level 5 and 29.4% at level 4. These characteristics highlight significant class imbalance in the

dataset, with 175 benign cases substantially outnumbering 17 malignant cases. This

imbalance will need to be carefully addressed in the model development phase to ensure

effective classification performance for both categories.

2.3. Image Preprocessing Strategies

Data augmentation is a widely used technique in deep learning that enhances the diversity of

the training dataset through various image transformations [7]. While common augmentation

methods include rotations, distortions, noise addition, and brightness/contrast modifications,
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medical image processing requires careful consideration to maintain diagnostic integrity. In

this study, only horizontal flipping (mirroring) was implemented on the Stanford AIMI

Shared Dataset. This conservative approach was chosen to preserve the anatomical and

pathological characteristics of thyroid nodules while effectively expanding the training data.

More aggressive augmentation techniques were avoided to prevent potential distortions that

might compromise diagnostic accuracy.

2.4. Thyroid Nodule Detection Model Development

The You Only Look Once (YOLO) model was selected for thyroid nodule detection due to its

proven track record in medical imaging applications [8]. YOLO models are particularly

well-suited for medical image interpretation, offering superior accuracy and minimal

background errors compared to traditional detection approaches. The specific implementation

uses YOLO11n, the latest iteration in the YOLO series, which has been optimized for precise

object localization through bounding box prediction.

During training, the model processes Stanford AIMI Thyroid Ultrasound Dataset images

through its detection architecture. Each image is paired with annotations in normalized

coordinates (center_x, center_y, width, height) following YOLO's format. The model was

trained with systematically evaluated hyperparameters, with key parameters including

learning rate, batch size, and learning rate scheduler. The dataset is first split with 15%

reserved as the test set. The remaining data undergoes 5-fold cross-validation, systematically

dividing it into five equal portions. This ensures each subset serves alternately as validation

data while the remaining portions form the training set, maximizing data utilization while

enabling robust evaluation of model generalization.

2.5. Thyroid Nodule Cancer Risk Classification Model System

2.5.1. Image Cropping Methods

Thyroid ultrasound ROIs extracted from ground truth labels were used as input for

subsequent networks. However, due to varying nodule sizes in the Stanford AIMI dataset and

the fixed input size requirement (224 × 224 pixels) of classification networks, a standardized
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image cropping method is essential for preprocessing thyroid ultrasound images shown in

Figure 2. The implemented cropping method centers each Region of Interest (ROI) within a

fixed-size square patch, applying zero-padding where necessary. This process maintains the

original scale and proportions of nodules while preserving the critical TI-RADS features:

composition, echogenicity, shape, margin, and punctate echogenic foci. Each ultrasound

image undergoes the same standardization process to ensure consistent dimensions for

network input. By preserving the nodule's original proportions and key diagnostic features,

the method enables accurate TI-RADS assessment while ensuring compatibility with deep

learning architectures.

Figure 2. Image cropping pipeline: (a) Target nodule marked by ground truth label; (b)

Region of Interest (ROI) extracted from ultrasound image; (c) image cropping method

2.5.2. Classification Model Development

Supervised deep learning algorithms are trained using labeled data, where the correct label or

class for each image is known in advance. This approach is particularly effective for

analyzing thyroid ultrasound images, as it delivers accurate and consistent detection and

classification of nodules [9]. Several convolutional neural network architectures will be

evaluated, including VGG16, VGG19, and ResNet50, leveraging their deep feature learning

capabilities. Those classification models directly learn thyroid nodule appearance patterns

from ROI images to predict ACR-TIRADS risk levels, focusing on critical characteristics:

composition, echogenicity, shape, margin, and punctate echogenic foci. This deep learning
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approach enables automatic feature learning from the image data, eliminating the need for

manual feature extraction and allowing the model to capture complex visual patterns

associated with different TI-RADS categories.

The training process will utilize labeled images from the standardized Stanford AIMI thyroid

ultrasound database, employing an 80-20 split for training and validation in a 5-fold

cross-validation scheme. Regularization techniques and network visualization methods will

be used to analyze learned features and their contribution to classification decisions. Model

performance will be rigorously evaluated across multiple validation sets using metrics such as

accuracy and F1-score. The implemented strategy is expected to yield a model capable of

accurate and reliable cancer risk classification for clinical screening and diagnosis support.

3. Results and Discussion

This section presents interim results from the evaluation of the YOLO-based thyroid nodule

detection system and preliminary design of the classification model through comprehensive

experiments. The performance assessment includes evaluation metrics and cross-validation

results to demonstrate the detection model's capability in automatic ROI extraction from

ultrasound images. Additionally, technical challenges encountered during model optimization

and data preprocessing are discussed, along with their proposed solutions. This section ends

with a discussion of the remaining work plan for the project.

3.1. Thyroid Nodule Detection Model Analysis

3.1.1. Evaluation Metrics

To assess the effectiveness of the YOLO model, several standard object detection metrics

were used, including precision, recall, mean Average Precision at IoU threshold 0.5 (mAP50),

and mean Average Precision across IoU thresholds from 0.5 to 0.95 (mAP50-95). These

metrics provide complementary insights: precision and recall measure detection accuracy and

completeness, while mAP values evaluate localization quality at different overlap thresholds.

A 5-fold cross-validation strategy was employed to ensure robust evaluation.
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3.1.2. Performance Evaluation

Figure 3. Achitecture of YOLO11n for thyroid nodule detection.

The performance of the YOLO-based detection model was evaluated on the reserved test set

from Stanford AIMI Shared Dataset, as demonstrated in Figure 3. The model could identify

the presence of thyroid nodules within ultrasound images and generate bounding boxes for

nodule localization, with each bounded region representing a detected nodule.

Fold Precision Recall mAP50 mAP50-95

1 0.875 0.560 0.735 0.501

2 0.929 0.424 0.668 0.473

3 0.895 0.552 0.739 0.472

4 0.902 0.529 0.729 0.489

5 0.877 0.609 0.760 0.472

Mean ± SD 0.896 ± 0.021 0.535 ± 0.068 0.726 ± 0.034 0.481 ± 0.013

Table 2. Cross-validation results of YOLO detection performance across five folds.

The detection performance was systematically evaluated across all five folds during the

testing process, as shown in Table 2. The results demonstrated consistent detection

capabilities across folds, with average metrics of precision = 0.896 ± 0.021, recall = 0.535 ±

0.068, mAP50 = 0.726 ± 0.034, and mAP50-95 = 0.481 ± 0.013. Notable variations in

performance were observed, with fold 5 achieving the highest mAP50 at 0.760, and fold 2

reaching the highest precision at 0.929.

Despite the challenges in detecting small or ambiguous nodules in ultrasound images, the
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model demonstrated reliable performance in most cases. The high precision scores (>0.87

across all folds) indicate the reliability in the detected nodules, suggesting minimal false

positive detections. The relatively lower recall values suggest room for improvement in

detecting all present nodules, this could potentially be addressed by adjusting the confidence

threshold based on specific clinical requirements. The stable mAP50 scores above 0.72

(except fold 2) demonstrate robust performance in accurate localization, while the mAP50-95

values indicate moderate performance across stricter IoU thresholds. These results suggest

that the YOLO-based detection model could achieve satisfactory performance in automatic

ROI extraction, potentially balancing detection accuracy with practical clinical requirements.

3.2. Thyroid Nodule Cancer Risk Classification Model Analysis

3.2.1. Preliminary Design and Results

The model is still in the development stage, and is expected to take the ground truth nodule

regions as input and output their corresponding TI-RADS levels, providing an automated risk

assessment for each identified nodule. Based on preliminary testing with VGG16, VGG19,

and ResNet50 architectures on a small subset of the data, the classification model is expected

to achieve accuracy rates between 65-75% for TI-RADS level prediction.

Several challenges have been identified during the initial classification model development.

The significant class imbalance in the dataset, particularly for TI-RADS levels 1 and 5, may

lead to a model bias towards the majority classes and poor recognition of the minority classes.

The limited number of malignant cases (only 17 cases) could further exacerbate this issue. To

mitigate these challenges, customized loss functions such as weighted cross-entropy or focal

loss can be implemented to assign higher penalties for misclassification of minority classes,

thereby encouraging the model to pay more attention to underrepresented samples.

3.3. Development Plan and Schedule

The project remains on schedule, with the detection model successfully implemented,

demonstrating strong potential for identifying thyroid nodules in ultrasound images. This

forms a solid foundation for the next phase of the project. The upcoming work will focus on
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the training and refinement of the cancer risk classification model. Once completed, the

classification model will be integrated with the detection stage to build a fully functional,

end-to-end pipeline. This pipeline will enable both the detection of thyroid nodules and the

assessment of their cancer risk levels, providing a streamlined solution for clinical use. The

final pipeline is expected to be a robust and efficient tool, capable of reducing manual

workloads and delivering objective, consistent insights to assist radiologists in diagnosis. The

integration of detection and classification into a single system will ensure seamless operation,

paving the way for future real-world deployment in clinical settings.
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