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Abstract. This report is submitted to fulfill the requirement of submitting
the detailed project plan in the course COMP4801 detailed project plan, as
a first deliverable. It provides a thorough explanation of the background, ob-
jective, methodology, and schedules & milestones of our project Computational
Examples for Boolean Constraint System Algebras and Nonlocal Games.

1. Project Background

The main object we are investigating is the Boolean1 constraint systems
(BCS), or a satisfiability problem with finite support of variables taking values
in the Boolean domain. General computational problems can be encoded into a
system comprised of relations among Boolean variables, or equivalently a BCS.
Both computing BCS and deciding the satisfiability of BCS induce different
complexity classes, which are building blocks of classical complexity theory
[Pap94]. Moreover, each BCS can be associated with a BCS non-local game
[PS23], which is a test among two provers and a verifier. The provers are unable
to communicate during the game, and they are separately given two questions,
to which they shall reply. The players win if the predicate related to the game
evaluates to 1 on the 4-tuple of verifier inputs and provers outputs. With
shared randomness, the players can play this game perfectly if and only if the
underlying BCS is satisfiable, meaning that there is a Boolean-value assignment
to its variables satisfying all the constraints. Thus, one can always examine the
satisfiability of a BCS by investigating the existence of the perfect strategy of its
‘non-local game’ version.

However, there are instances of BCS that are not satisfiable in the classical
picture, but can be played perfectly by sharing an entangled quantum state
between the two provers. The renowned Mermin-Peres Magic Square Game
is a nice example, first proposed by Mermin and Peres in [Mer90, Per90]. A
subsequent work by Cleve and Mittal introduced the general class of BCS games,

1We use this word rather than ‘binary’ to avoid confusion with 2-ary relations.
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and gave a condition that ensures the existence of perfect strategy for a special
class of these games [CM14].

The satisfiability of a BCS game with a shared quantum state generalizes the
classical strategy to a quantum one, which is natural since equivalently we are
assigning Hermitian and idempotent matrices to variables in the system rather
than {0, 1} values. Cleve and Mittal implicitly included in [CM14] a result that
a BCS instance B is satisfiable if and only if its associated ∗-algebra A (B) has a
∗-homomorphism to the ∗-algebra B(H) where H is a finite-dimensional Hilbert
space. Such an algebra appeared firstly in Ji’s work [Ji13], and more recently
in Paddock’s discussion of approximate rigidity results of BCS non-local games
[Pad24].

While non-local games are obtained by encoding a BCS into a multi-interactive
proof system, we are particularly interested in a special class of it, i.e., the
synchronous games, where the two verifiers share the same input and output
spaces, and its predicate requires a ‘consistency check’. Central to the research
on synchronous games is the associated ∗-algebra A(G) to any instance G,
whose primitive version was the C∗-algebra proposed by Paulsen et al.and then
formally stated in [HMPS17]. It is shown by Kim, Paulsen and Schafhauser
that every BCS non-local game can be transformed into a synchronous game,
while preserving the soundness and completeness [KPS18]. By examining the
existence of ∗-homomorphism from A(G) to any ∗-algebra endowed with various
properties, one can develop different models of entanglement, i.e., the collection
of all the quantum correlations (strategies) among the two provers. To specify,
we denote Mt as the t-models of the framework under which the game is played,
and typical choices of t are in {loc, q, qa, qc, C∗, hered, alg}. By their definitions,
there is a hierarchical order among these models, specified by

Mloc ⊆ Mq ⊆ Mqa ⊆ Mqc ⊆ MC∗ ⊆ Mhered ⊆ Malg.

Subsequent works have provided a refinement of the above chain on general
non-local games. In [CMN+06] a graph with classical chromatic number 5 but
quantum chromatic number 4 is constructed, yielding Mloc ⊊ Mq. Slofstra
[Slo17] proved that Mq is not closed, resulting the strict inclusion Mq ⊊ Mqa.
Ji, Natarajan, Vidick and Wright proved that Mqa ̸= Mqc. Paddock and
Slofstra constructed a constraint system that is C∗-satisfiable but not tracially-
satisfiable in [PS23], or Mqc ⊊ MC∗ . In [CLS17] it is proved that Mqc = MC∗ =
Mhered = Malg for linear systems. In [He24] it is proved that MC∗ = Mhered

for any synchronous games, and a computational example for Mhered ̸= Malg is
provided.

We focus on the contributions of quantum resources to the classical complexity
theory. The two-player(prover) one-round games have been extensively studied
in classical complexity theory, and this model induces the complexity class MIP.
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With shared quantum states, we have the quantum analog of MIP, i.e., the MIP∗.
Researchers have been interested in how powerful these interactive proof systems
are, or equivalently, at which hierarchy these communication models fit into
among the various complexity classes we currently have. It was first proved by
Babai, Fortnow, and Lund [BFL] that MIP = NEXP. Whether the inclusion
MIP ⊆ MIP∗ is vague for a desirable amount of time, until it was eventually
showed true by Ito and Vidick [IV12]. Natarajan and Wright [NW19] showed
that the MIP∗ system undergoes an exponential growth in power by presenting
the result NEEXP ⊆ MIP∗. The latest result by Ji, Natarajan, Vidick, Wright,
and Yuen [JNV+22], which is still under peer review, yields MIP∗ = RE.

There are still many open problems in this field that need to be addressed. and
we tend to focus on those being easier to resolve2. In [Har23] it is questioned that
if two provers can win the synchronous game G with probability 1−ϵ, whether the
players can correspondingly win the game Hom(Gλ, K3) with probability 1−O(ϵ),
where Gλ is a asymmetric graph induced from the predicate of G. Moreover,
deciding whether χalg(G) = 4 for any graph G is proved undecidable in the same
literature, but a tight classification for this problem into the complexity classes
we have insofar investigated is still open. Whether the QMA class, which is
an acronym of the Quantum Merlin-Arthur, can fit into MIP[q = O(log n), a =
O(log n)] in certain manner, is rendered open in the reviewing preprint [NN24].
Due to the limitation of context, we will not herein give detailed clarification,
but left readers to the bibliography where they can find numerous related open
problems.

2. Project Objective

We focus on a small fraction of current open problems lying in properties of
∗-algebras of synchronous games and the complexity of variant of MIP systems
with quantum resources. The project outcomes would primarily consist of proof
of theorems and the development of certain computational tools (Mathematica,
Python, intended). The author, through a private talk with Shunzhuang Huang
[Hua], was introduced to the concept of Haar measure that enables the endow-
ment of analytical properties to topological groups. It may potentially provide
convenience to examine further characteristics of the ∗-algebra (under Helton et
al.’s interpretation, is a quotient of a free group algebra [HMPS17]).

3. Project Methodology

There are various toolkits in the field of non-local games. For instance, one
can use the NPA-hierarchy method [NPA08] and exhausted search in incremental

2There are certain problems that are extremely hard. Concerning the feasibility to solve
them as a undergraduate student, we only list relatively easy ones here.
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dimensions [JNV+22] to approximate the value of ωqc(G) and ωq(G), respectively.
Building upon Watts, Helton and Klep’s work [BWHK23], a computational
tool to decide the non-existence of perfect C∗-strategy for general non-local
game is developed in [He24]. We will moreover attempt to solve open problems
by applying mathematical tools introduced in [Arv76, HMPS17, GS24, NW19].
Preliminary knowledges on C∗-algebras, functional analysis, real analysis and
basic abstract algebra will be required.

4. Project Schedule and Milestones

Proposing a strict timeline for this project might be rather difficult. We would
suggest an obscure one instead.

Table 1. Tentative Schedule for URFP

Date Events
2024 Sep. - Oct. Literature review, collect attemptable open problems.

2024 Nov. - 2025 Jan. Learn mathematical tools accordingly.
2025 Jan. - 2025 May. Start solving the problems.
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