
CAES9542 Technical English for Computer Science

Decidable Bounded Quantification
Partial Report

Yang Mingtian
(3035845576)

15th October 2024

1 Introduction

1.1 Overview

In the field of programming language theory, a type system is a formal system that categorises
expressions into specific types in a compositional manner. A robust type system plays a crucial
role in preventing certain undesirable program behaviours, thus enabling early detection of
programming errors. By incorporating more features into their type systems, programming
languages can achieve greater expressive capabilities. Nevertheless, the inclusion of new
features into a type system may lead to increased metatheoretical complexity. Therefore, care
must be taken when designing a type system.

Bounded quantification, which combines subtyping and parametric polymorphism, is a key
feature in many modern programming languages, such as Java, Scala, and TypeScript. The
concept of bounded quantification was initially introduced by Cardelli and Wegner [1985] in an
experimental programming language called Fun. The type system of Fun was later refined and
formalised into a calculus known as System F<: by Curien and Ghelli [1992].

In System F<:, there are four kinds of types, namely the top type, variable types, function
types, and universal types. The subtype relationship <: is a preorder on them. The syntax
for types can be described using Backus–Naur form as presented in Figure 1, and the static
semantics for <: can be depicted using the inference rules illustrated in Figure 2.

𝜏 ::= ⊤ | 𝛼 | 𝜏 → 𝜏 | ∀𝛼 <: 𝜏.𝜏

Figure 1: Syntax for types in System F<:

Top
Γ ⊢ 𝜎 <: ⊤ Refl

Γ ⊢ 𝛼 <: 𝛼
Γ ⊢ Γ(𝛼) <: 𝜏

Var
Γ ⊢ 𝛼 <: 𝜏

Γ ⊢ 𝜏1 <: 𝜎1 Γ ⊢ 𝜎2 <: 𝜏2 Arrow
Γ ⊢ 𝜎1 → 𝜎2 <: 𝜏1 → 𝜏2

Γ ⊢ 𝜏1 <: 𝜎1 Γ, 𝛼 <: 𝜏1 ⊢ 𝜎2 <: 𝜏2 All
Γ ⊢ ∀𝛼 <: 𝜎1.𝜎2 <: ∀𝛼 <: 𝜏1.𝜏2

Figure 2: Static semantics for <: in System F<:

While the rules are presented within a logical framework, they can also be effectively applied
in a computational framework. From an algorithmic standpoint, these rules can be viewed as
rules that reduce the main problem below the horizontal line into zero or more subproblems
above the line. The subtyping algorithm recursively applies these rules and terminates once all
subproblems have been resolved.

1

1.2 Problem Statement

While System F<: was widely adopted as the standard calculus for bounded quantification, it was
eventually demonstrated to have an undecidable subtype relation [Pierce 1992]. In other words,
the abovementioned subtyping algorithm does not terminate for all inputs, and it is impossible
to design another subtyping algorithm for System F<: that guarantees its termination.

The source of the undecidability stems from the All rule, which changes the bound on
instances of 𝛼 in 𝜎2 from 𝜎1 to 𝜏1. Despite the subtype relationship between 𝜏1 and 𝜎1, 𝜏1

could potentially be structurally more complex than 𝜎1, leading to the subproblem becoming
structurally larger than the initial problem.

1.3 Objectives and Deliverables

The main focus of this project is thus to investigate the design of a mechanism for bounded
quantification that guarantees its decidability. This involves proposing new inference rules
and using a interactive theorem prover to verify their desirable properties, such as reflexivity,
transitivity, and decidability. Subsequently, a toy programming language incorporating the
revised type system will be implemented. The ultimate goal is to improve the usability of
programming languages and increase the productivity of programmers.

1.4 Outline of the Report

The remainder of this report proceeds as follows. In Section 2, prior research on decidable
bounded quantification is reviewed, along with an examination of relevant techniques developed
in recent works that may contribute to the achievement of decidable bounded quantification.
Section 3 introduces the tools and methodology utilised and planned for this study.

2 Literature Review

Since the undecidability of System F<: became widely acknowledged, some decidable fragments
of System F<: have been proposed and studied. A brief introduction of these type systems and
their limitations is included in Section 2.1. Additionally, recent works have proposed new
approaches for designing decidable type systems. The approach to be employed in this project
is introduced in Section 2.2.

2.1 Decidable Fragments of System F<:

2.1.1 Kernel F<:

The undecidability of System F<: is attributed to the revision made by Curien and Ghelli [1992]
to Fun’s type system. In fact, the original formulation by Cardelli and Wegner [1985] already

2

gives rise to a decidable type system known as Kernel F<:, where the subtype order is restricted
to those with equal bounds. Its subtyping rule for universal types is as follows:

Γ, 𝛼 <: 𝜎1 ⊢ 𝜎2 <: 𝜏2 KernelAll
Γ ⊢ ∀𝛼 <: 𝜎1.𝜎2 <: ∀𝛼 <: 𝜎1.𝜏2

The primary drawback of Kernel F<:, which is also the reason for the revision by Curien
and Ghelli [1992], is that the requirement for bounds to be identical significantly hampers the
expressiveness of the programming language.

2.1.2 System F⊤
<:

Another decidable fragment of System F<: is System F⊤
<: [Castagna and Pierce 1994], where 𝛼 is

rebounded to ⊤ during the inference on the bodies, leading to the disregard of type information
regarding bounds. Its subtyping rule for universal types is as follows:

Γ ⊢ 𝜏1 <: 𝜎1 Γ, 𝛼 <: ⊤ ⊢ 𝜎2 <: 𝜏2 TopAll
Γ ⊢ ∀𝛼 <: 𝜎1.𝜎2 <: ∀𝛼 <: 𝜏1.𝜏2

Although it ensures decidability and provides a more expressive subtype relation than Kernel
F<:, it does not interact well with the typing rules [Laird 2023], and thus is still not an ideal
type system for bounded quantification.

2.1.3 Completely Bounded Quantification

Completely bounded quantification (CBQ) [Katiyar and Sankar 1992] can be viewed as a
minimalistic decidable fragment of System F<:. Instead of simply modifying the All rule, it
imposes constraints on the formation of universal types. It prohibits ⊤ from appearing in the
bounds to ensure that every type variable is completely bounded. As a result, if Γ ⊢ 𝜏1 <: 𝜎1

holds, the bounds 𝜏1 and 𝜎1 in the All rule must have the same structure, ensuring decidability.
While CBQ is more restrictive and less expressive than Kernel F<:, it serves as a suitable starting
point for further research on the topic due to its simplicity.

2.2 Nominal Unfolding Rules

In a recent study by Zhou et al. [2023], nominal unfolding rules are employed to extend Kernel
F<: with iso-recursive types and subtyping. The nominal unfolding rules are as follows:

Γ, 𝛼 ⊢ [𝛼 ↦→ 𝐴𝛼̂]𝐴 <: [𝛼 ↦→ 𝐵𝛼̂]𝐵
Nominal

Γ ⊢ 𝜇𝛼.𝐴 <: 𝜇𝛼.𝐵
Γ ⊢ 𝐴 <: 𝐵 Label
Γ ⊢ 𝐴𝛼̂ <: 𝐵𝛼̂

In nominal unfolding rules, an additional label 𝛼̂ is introduced alongside the recursive
variable name 𝛼, enabling the tracking of recursive variable names during double unfolding to
avoid accidental subtyping.

3

The nominal unfolding rules have been formally proved by Zhou et al. [2022] to be sound,
decidable, and equivalent in expressive power to the commonly utilised Amber rules for sub-
typing iso-recursive types. Additionally, Zhou et al. [2023] has illustrated that the nominal
unfolding rules are more straightforward to be formalised and can be smoothly incorporated
into an existing type system in a modular fashion.

Given these considerations, it is highly plausible that the concept of nominal labelling
underlying the nominal unfolding rules represents a potent and suitable approach to achieving
decidable bounded quantification.

3 Methodology

Before proposing the new type system, CBQ is first formalised. The tools and theories are
elucidated in Section 3.1.

Building upon CBQ, a new type system featuring decidable bounded quantification will
be proposed, drawing inspiration from the nominal unfolding rules presented in Section 2.2.
The refined type system will be initially formalised using the same methodologies detailed in
Section 3.1, followed by its implementation as a toy programming language using the technology
stack outlined in Section 3.2.

3.1 Formalisation and Theorem Proving

Interactive theorem proving technology is employed to formalise CBQ. In contrast to traditional
paper-and-pencil proofs, it ensures the accuracy of the proof via machine verification, provided
that the theorem specifications are precise.

The theoretical basis for interactive theorem proving is grounded in computational trinitari-
anism, as illustrated in Figure 3.

Cartesian-Closed
Categories

𝜆-calculus
Intuitionistic

Logic

Figure 3: Computational trinitarianism [Melliès 2006]

In simple terms, logic, languages (illustrated by 𝜆-calculus), and categories are three view-
points of a unified computational concept. A proof of a proposition is computationally equivalent
to a program of a specific type. Validating a proof essentially involves performing a type check
on a program.

4

Specifically, Coq [The Coq Development Team 2024] is used as the proof assistant, and
a Coq library called Metalib [Aydemir et al. 2008] is employed. This library offers practical
infrastructures for formalising a type system in a innovative style that combines locally nameless
representation and cofinite quantification in the definitions of term-wise relations [Aydemir
et al. 2008]. This approach uses de Bruijn indices for bound variables and atoms for free
variables to eliminate the need for 𝛼-conversion and the manipulation of shifting indices,
thereby streamlining the proofs.

The proofs for reflexivity and transitivity are fairly standard and straightforward. The
theorem of decidability, formalised with Coq as illustrated in Listing 1, is slightly more tricky
to prove.

Theorem sub_decidability :
forall E S T, wf_env E -> wf_typ E S -> wf_typ E T ->
sub E S T \/ ˜ sub E S T.

Listing 1: Theorem of decidability formalised with Coq

To prove decidability, a complexity metric developed by Katiyar and Sankar [1992] is
employed:

complexity(Γ ⊢ 𝜎 <: 𝜏) = size(𝜎)Γ + size(𝜏)Γ
sizeΓ (⊤) = 1

sizeΓ (𝛼) =


sizeΓ (Γ(𝛼)) if Γ(𝛼) is defined

1 otherwise

sizeΓ (𝜏1 → 𝜏2) = sizeΓ (𝜏1) + sizeΓ (𝜏2)
sizeΓ (∀𝛼 <: 𝜏1.𝜏2) = sizeΓ (𝜏1) + sizeΓ,𝛼<:𝜏1 (𝜏2)

In prose, the complexity of a subtyping problem Γ ⊢ 𝜎 <: 𝜏 is defined to be the sum of the
textual size of 𝜎 and 𝜏 under the environment Γ.

With the complexity metric defined, the theorem sub decidability can thus be proven
using an auxiliary lemma, as shown in Listing 2.

Lemma sub_decidability_aux :
forall k E S T, wf_env E -> wf_typ E S -> wf_typ E T ->
complexity E S T < k ->
sub E S T \/ ˜ sub E S T.

Listing 2: Auxiliary lemma for proving sub decidability formalised with Coq

The lemma sub decidability aux can be proven by inducting on 𝑘 . The formalised proof
demonstrates that complexity(·) is both finite and positive for any finite subtyping problem, and

5

any subproblem generated by the inference rules always has a smaller size than the original
problem. Therefore, the substyping algorithm for CBQ is decidable.

For the formalisation of the new type system to be proposed, similar techniques will be used,
although the specific mathematical details may vary slightly.

3.2 Implementation

An interpreter, structured as depicted in Figure 4, will be developed to implement a toy pro-
gramming language that integrates the refined type system.

Lexing Parsing Type
Checking Evaluation

characters

tokens AST AST

results

errors errors errors errors

Figure 4: Structure of the interpreter

An interpreter is a program that takes source code input from the user and returns results or
errors back to them. The interpreter workflow typically involves four phases: lexing, parsing,
type checking, and evaluation.

During the lexing phase, the interpreter receives the source code as a stream of characters
and converts it into a stream of tokens. In the parsing phase, the tokens are structured into an
abstract syntax tree (AST). Subsequently, in the type checking phase, the interpreter verifies the
validity of type information using the defined static semantic rules for the type system. Finally,
in the evaluation phase, the code is executed on the AST by recursively applying the dynamic
semantic rules, and the results are displayed to the user. Any errors detected at any phase are
reported immediately.

In this project, OCaml [Leroy et al. 2024] will be used as the metalanguage throughout the
four phases. OCaml’s neat syntax for algebraic data types facilitates the manipulation of ASTs,
enhancing development efficiency. For the first two phases, the OCaml libraries OCamllex and
Menhir will be employed to automatically generate the lexer and parser, respectively, from the
language specification. For the final two phases, both the type checker and the evaluator will be
developed as functions that recursively apply the matched rule from a collection of rules.

6

References

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. 2008. Engineering formal metatheory. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco,
California, USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA,
3–15. https://doi.org/10.1145/1328438.1328443

Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and poly-
morphism. Computing Surveys 17, 4 (1985).

Giuseppe Castagna and Benjamin C. Pierce. 1994. Decidable bounded quantification. In Pro-
ceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Portland, Oregon, USA) (POPL ’94). Association for Computing Machinery,
New York, NY, USA, 151–162. https://doi.org/10.1145/174675.177844

Pierre-Louis Curien and Giorgio Ghelli. 1992. Coherence of subsumption, minimum typing
and type-checking in F≤. Mathematical Structures in Computer Science 2, 1 (1992), 55–91.

Dinesh Katiyar and Sriram Sankar. 1992. Completely Bounded Quantification is Decidable. In
Proceedings of the ACM SIGPLAN Workshop on ML and its Applications. 68–77.

James Laird. 2023. Revisiting Decidable Bounded Quantification, via Dinaturality. Electronic
Notes in Theoretical Informatics and Computer Science 1, Article 10 (Feb. 2023), 16 pages.
https://doi.org/10.46298/entics.10474

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. 2024. The OCaml system release 5.2: Documentation and user’s manual. (2024).
https://ocaml.org/manual/5.2/

Paul-André Melliès. 2006. Functorial Boxes in String Diagrams. In Computer Science Logic,
Zoltán Ésik (Ed.). Springer, Berlin, Germany, 1–30.

Benjamin C. Pierce. 1992. Bounded quantification is undecidable. In Proceedings of the
19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Al-
buquerque, New Mexico, USA) (POPL ’92). Association for Computing Machinery, New
York, NY, USA, 305–315. https://doi.org/10.1145/143165.143228

The Coq Development Team. 2024. The Coq Reference Manual – Release 8.19.2. https:
//coq.inria.fr/doc/V8.19.2/refman.

Litao Zhou, Yaoda Zhou, and Bruno C. d. S. Oliveira. 2023. Recursive Subtyping for All. Proc.
ACM Program. Lang. 7, POPL, Article 48 (Jan. 2023), 30 pages. https://doi.org/10.
1145/3571241

7

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/174675.177844
https://doi.org/10.46298/entics.10474
https://ocaml.org/manual/5.2/
https://doi.org/10.1145/143165.143228
https://coq.inria.fr/doc/V8.19.2/refman
https://coq.inria.fr/doc/V8.19.2/refman
https://doi.org/10.1145/3571241
https://doi.org/10.1145/3571241

Yaoda Zhou, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2022. Revisiting Iso-Recursive Subtyping.
ACM Trans. Program. Lang. Syst. 44, 4, Article 24 (Sept. 2022), 54 pages. https:

//doi.org/10.1145/3549537

8

https://doi.org/10.1145/3549537
https://doi.org/10.1145/3549537

	Introduction
	Overview
	Problem Statement
	Objectives and Deliverables
	Outline of the Report

	Literature Review
	Decidable Fragments of System F<:
	Kernel F<:
	System F<:
	Completely Bounded Quantification

	Nominal Unfolding Rules

	Methodology
	Formalisation and Theorem Proving
	Implementation

