
Decidable Bounded Quantification
Detailed Project Plan

Yang Mingtian

1 October 2024

Contents
1. Background .. 1
2. Objective ... 2
3. Methodology .. 2

3.1. Formalisation and Proof .. 2
3.2. Revision of the Type System .. 3
3.3. Lanugage Implementation .. 3

4. Schedule and Milestones ... 3
Bibliography ... 4

1. Background
In the field of programming language theory, a type system is a formal system that categorises terms
into specific types. A robust type system plays a crucial role in preventing certain undesirable program
behaviours, thus enabling early detection of programming errors.

Subtyping and parametric polymorphism are key features in modern programming languages. By
incorporating bounded quantification, which combines both features, programming languages can
achieve greater expressive capabilities.

Nevertheless, the inclusion of bounded quantification can lead to increased metatheoretical complex-
ity within the type system [10]. For instance, the standard calculus for bounded quantification, System
F<: [2], [5], pronounced ‘F-sub’, has been proved to have an undecidable subtype relation. That is, it
has no subtyping algorithm that terminates on all inputs [6].

Top
Γ ⊢ 𝜎 <: ⊤

Refl
Γ ⊢ 𝛼 <: 𝛼

Γ ⊢ Γ(𝛼) <: 𝜏 Var
Γ ⊢ 𝛼 <: 𝜏

Γ ⊢ 𝜏1 <: 𝜎1 Γ ⊢ 𝜎2 <: 𝜏2 Arrow
Γ ⊢ 𝜎1 → 𝜎2 <: 𝜏1 → 𝜏2

Γ ⊢ 𝜏1 <: 𝜎1 Γ, 𝛼 <: 𝜏1 ⊢ 𝜎2 <: 𝜏2 All
Γ ⊢ ∀𝛼 <: 𝜎1.𝜎2 <: ∀𝛼 <: 𝜏1.𝜏2

The root of the problem lies in the All rule, in which the bound on instances of 𝛼 occuring in 𝜎2
changes from 𝜎1 to 𝜏1.

Various proposals have been made. One of them is Kernel F<: [2], in which the subtype order is re-
stricted to those which have equal bounds:

Γ, 𝛼 <: 𝜎1 ⊢ 𝜎2 <: 𝜏2 All-k.
Γ ⊢ ∀𝛼 <: 𝜎1.𝜎2 <: ∀𝛼 <: 𝜎1.𝜏2

Although this revision guarantees algorithmic decidability, it severely compromises the expressiveness
of the language, and thus lacks practicality.

Another decidable variant of System F<: is System F⊤
<: [3], in which the type information of bounds

is ignored when inferring on the bodies:

Γ ⊢ 𝜏1 <: 𝜎1 Γ, 𝛼 <: ⊤ ⊢ 𝜎2 <: 𝜏2 All-t.
Γ ⊢ ∀𝛼 <: 𝜎1.𝜎2 <: ∀𝛼 <: 𝜏1.𝜏2

1 of 4

Although this yields an expressive subtyping relation, it does not interact nicely with the typing rules
[8], and thus is still not an ideal type system.

2. Objective
The main focus of this project is to investigate the design of a mechanism for bounded quantification
that ensures its decidability. This involves proposing new subtyping rules and using a interactive the-
orem prover to verify their desirable properties, such as reflexivity, transitivity, and decidability. Sub-
sequently, a toy programming language incorporating the revised type system will be implemented.
The ultimate goal is to improve the usability of programming languages and increase the productivity
of programmers.

3. Methodology
We will first examine an existing type system, completely bounded quantification [7], which is a de-
cidable variant of F<: such that it prohibits ⊤ from appearing in the bounds. Although it is even more
restrictive than Kernel F<: and loses more expressiveness, it is a suitable starting point due to its sim-
plicity.

On the basis of completely bounded quantification, we will propose a new variant of the type system,
formalise it, prove it properties, and finally implement a toy programming language.

3.1. Formalisation and Proof
Coq [4] will be used as the interactive theorem prover in which we will formalise the type system and
prove its properties. Specifically, we will use the Metalib [1], a Coq library, in which a novel formali-
sation style that combines locally nameless representation of terms and cofinite quantification of free
variable names in inductive definitions of relations on terms is proposed.

The theorems we are going to prove can be formalised in Coq as follows:

• Reflexivity

Theorem sub_reflexivity :
 forall E T,
 wf_env E ->
 wf_typ E T ->
 sub E T T.

• Transitivity

Theorem sub_transitivity :
 forall E, wf_env E ->
 forall Q, wf_typ E Q ->
 forall S, wf_typ E S -> sub E S Q ->
 forall T, wf_typ E T -> sub E Q T ->
 sub E S T.

• Decidability

Theorem sub_decidability :
 forall E S T,
 wf_env E ->
 wf_typ E S ->
 wf_typ E T ->
 sub E S T \/ ~ sub E S T.

The proofs for reflexivity and transitivity are fairly standard and straightforward. To prove decidabil-
ity, we will first define a complexity metric which is finite and positive for each subtyping problem,

2 of 4

and show that the application of inference rules causes the complexity of the new subtyping problems
to decrease. For completely bounded quantification, we will follow the original definition in [7]:

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(Γ ⊢ 𝜎 <: 𝜏) =def 𝑠𝑖𝑧𝑒(𝜎)Γ + 𝑠𝑖𝑧𝑒(𝜏)Γ

𝑠𝑖𝑧𝑒(⊤)Γ = 1

𝑠𝑖𝑧𝑒(𝛼)Γ = {
𝑠𝑖𝑧𝑒(Γ(𝛼))Γ if Γ(𝛼) is defined
1 otherwise

𝑠𝑖𝑧𝑒(𝜏1 → 𝜏2)Γ = 𝑠𝑖𝑧𝑒(𝜏1)Γ + 𝑠𝑖𝑧𝑒(𝜏2)Γ

𝑠𝑖𝑧𝑒(∀𝛼 <: 𝜏1.𝜏2)Γ = 𝑠𝑖𝑧𝑒(𝜏1)Γ + 𝑠𝑖𝑧𝑒(𝜏2)Γ,𝛼<:𝜏1

Afterwards, we can prove the decidability by induction on complexity.

3.2. Revision of the Type System
The approach to revise the type system is inspired by the recent work of [11], where they extended
Kernel F<: with iso-recursive types and subtyping using the nominal unfolding rules.

The rules are one of the proposed variants of rules for subtyping recursive types introduced by [12].
In nominal unfolding rules, an extra label with the recursive variable name is added, enabling us to
track the name of the recursive variables during double unfolding to avoid accidental subtyping. The
rules have been proven to be type sound and have the same level of expressiveness as the iso-recur-
sive Amber rules, and they are easier to work with formally and can be seamlessly integrated into an
existing calculus in a modular manner.

Based on these factors, we believe that the nominal unfolding rules are a powerful and appropriate
tool for addressing our research topic. Therefore, we will incorporate them as part of our solution.

3.3. Lanugage Implementation
We will use OCaml [9] to implement the toy programming language. OCaml is an industrial-strength
functional programming language with an emphasis on expressiveness and safety. It is widely used in
the implementation of programming languages, such as Coq, ReScript, and MoonBit.

Since the main purpose of this project is the design and implementation of a type system, we will im-
plement an interpreter instead of a compiler. In other words, we will not generate any low-level code.

On the other hand, since our project focuses on the semantics (type system) rather than the syntax,
we will not spend too much energy on the frontend. Therefore, we will use OCamllex and Menhir to
generate the lexer and parser.

4. Schedule and Milestones
• Research Internship (Jun – Aug 2024)

‣ Literature review
‣ Formalisation of completely bounded quantification
‣ Proof of the key properties of its subtype relation:

– Reflexivity
– Transitivity
– Decidability

• Phase 1 (Sept 2024)
‣ Detailed project plan
‣ Project web page

• Phase 2 (Oct 2024 – Jan 2025)

3 of 4

‣ Investigation of the nominal unfolding rules
‣ Formalisation of the revised type system
‣ Proof of the above-mentioned key properties
‣ Interim report

• Phase 3 (Feb – Apr 2025)
‣ Interpreter
‣ Final report

Bibliography
[1] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich.

2008. Engineering formal metatheory. SIGPLAN Not. 43, 1 (January 2008), 3–15. https://doi.org/
10.1145/1328897.1328443

[2] Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and polymor-
phism. Computing Surveys 17, 4 (1985).

[3] Giuseppe Castagna and Benjamin C. Pierce. 1994. Decidable bounded quantification. In Proceed-
ings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
'94), 1994. Association for Computing Machinery, Portland, Oregon, USA, 151–162. https://doi.
org/10.1145/174675.177844

[4] The Coq Development Team. 2024. The Coq Reference Manual – Release 8.19.0.

[5] Pierre-Louis Curien and Giorgio Ghelli. 1992. Coherence of subsumption, minimum typing and
type-checking in F≤. Mathematical Structures in Computer Science 2, 1 (1992), 55–91.

[6] Pierre-Louis Curien and Giorgio Ghelli. 1992. Bounded quantification is undecidable. In Proceed-
ings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL '92), 1992.

[7] Dinesh Katiyar and Sriram Sankar. 1992. Completely Bounded Quantification is Decidable. In
Proceedings of the ACM SIGPLAN Workshop on ML and its Applications, 1992. 68–77.

[8] James Laird. 2023. Revisiting Decidable Bounded Quantification, via Dinaturality. Electronic Notes
in Theoretical Informatics and Computer Science (February 2023). https://doi.org/10.46298/entics.
10474

[9] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The OCaml system: Documentation and user's manual. INRIA 3, 42–43.

[10] Benjamin C. Pierce. 2002. Types and Programming Languages. The MIT Press.

[11] Litao Zhou, Yaoda Zhou, and Bruno C. d. S. Oliveira. 2023. Recursive Subtyping for All. Proc.
ACM Program. Lang. 7, POPL (January 2023). https://doi.org/10.1145/3571241

[12] Yaoda Zhou, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2022. Revisiting Iso-Recursive Subtyping.
ACM Trans. Program. Lang. Syst. 44, 4 (September 2022). https://doi.org/10.1145/3549537

4 of 4

https://doi.org/10.1145/1328897.1328443
https://doi.org/10.1145/174675.177844
https://doi.org/10.46298/entics.10474
https://doi.org/10.46298/entics.10474
https://doi.org/10.1145/3571241
https://doi.org/10.1145/3549537

	Background
	Objective
	Methodology
	Formalisation and Proof
	Revision of the Type System
	Lanugage Implementation

	Schedule and Milestones
	Bibliography

